5 ЛЕТ – 15 СЕМИНАРОВ

Журнал «Гироскопия и навигация» при поддержке общественного объединения «Академия навигации и управления движением» (АНУД) с 2020 г. проводит онлайн-семинары, посвященные обсуждению опубликованных в издании статей, авторы которых выразили готовность вынести свои работы на суд научной общественности. На тот момент ограничения на общественные мероприятия, связанные с последствиями пандемии COVID-19, были еще жесткими, и иного формата, кроме дистанционного, не предполагалось. Вместе с тем надо отметить, что этот формат оказался чрезвычайно удобным, поэтому и в настоящее время является основным [1].

Первые семинары

Идея зародилась осенью 2020 г., когда в редакцию журнала обратился аспирант Московского государственного технического университета имени Н.Э. Баумана (Национальный исследовательский университет) Надер Аль Битар. Его интересовало получение отзыва на диссертацию от организации-учредителя журнала — ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», поскольку две основные статьи по тематике его диссертации были опубликованы именно здесь в 2019 г.

Н. Аль Битар

Редакция предложила обсудить статьи на семинаре. Заместитель главного редактора журнала, вице-президент АНУД член-корр. РАН О.А. Степанов заинтересовался опубликованными статьями и со свойственным ему энтузиазмом начал привлекать к их изучению как аспирантов, так и авторитетных ученых. В ходе знакомства с текстами возникла дискуссия и появились вопросы к автору. В результате были запланированы два семинара – по одному на каждую статью [2, 3].

Семинар по первой статье [2] состоялся 22 октября 2020 г. Было отмечено, что работа затрагивает важную проблему повышения эффективности алгоритмов комплексирования данных в интегрированных ИНС/СНС системах. В работе сопоставлялись два варианта в предположении, что обработка ведется согласно слабосвязанной схеме комплексирования.

В первом варианте применялся обобщенный фильтр Калмана (ОФК) с вектором состояния в виде ошибок ИНС и измерениями в виде разностей координат и скоростей, полученных от БИНС и СНС (инвариантная схема комплексирования). Во втором варианте использована неинвариантная схема с измерениями от ГНСС, в качестве которых выступают координаты и скорости, а алгоритм представляет собой ансцентный фильтр Калмана (unscented Kalman filter – UKF).

Для обоих вариантов были предложены уравнения для вектора состояния, описаны ошибки чувствительных элементов и приведены результаты обработки реальных данных, которые сопоставлены с эталоном. Показано, что вторая схема с алгоритмом UKF позволяет как повысить точность, так и выработать ее более адекватную расчетную характеристику. Отмечено, что к аналогичным выводам пришли и другие авторы.

Дискуссия оказалась оживленной и длилась более полутора часов. Был сделан ряд предложений по возможным направлениям дальнейших исследований.

В ходе обсуждения были также высказаны замечания в адрес выполненного в работе сопоставления нейронных сетей и алгоритмов фильтрации и предложено не ограничиваться при этом только линейными алгоритмами фильтрации. На семинаре активно выступали ведущий О.А. Степанов, кандидаты наук А.П. Степанов и А.В. Моторин, А.В. Лопарев, д.т.н. Д.А. Кошаев (все – АО «Концерн «ЦНИИ «Электроприбор», Санкт-Петербург) и другие участники.

В заключение секретарь редколлегии к.т.н. Д.О. Тарановский рассказал о том, какие статьи по тематике интегрированных навигационных систем опубликованы в журнале за последние 4 года.

Опыт проведения семинара был признан успешным и полезным как для автора, который получил возможность обсудить результаты своей работы с коллегами, так и для участников дискуссии, включая членов редколлегии и рецензентов журнала. Было решено организовывать подобные мероприятия и в будущем.

Обсуждение второй статьи [3] прошло на следующем заседании семинара 26 октября 2020 г. Были рассмотрены различные схемы включения нейронных сетей в алгоритмы комплексирования. Акцент при этом делался на двух основных вариантах — «дополненном» и «компенсированном» фильтрах Калмана. Обсуждались достоинства и недостатки, которыми, по мнению авторов статьи, обладают алгоритмы линейной фильтрации и на базе нейронных сетей. Отмечены значительные усилия авторов по систематизации материалов, касающихся использования нейронных сетей в задачах комплексной обработки данных ИНС/СНС.

Позднее состоялась и третья онлайн-встреча с Н. Аль Битаром, на которой уже в узком кругу обсуждалась подготовленная им диссертация, впоследствии блестяще защищенная в МГТУ им. Н.Э. Баумана.

С тех пор мероприятия проходят следующим образом: сначала автор делает короткий доклад, в котором излагает основные идеи опубликованной работы. Далее участники задают вопросы докладчику и в свободной форме обмениваются мнениями по обсуждаемой теме.

Хронология онлайн-семинаров представлена в таблице.

Таблица

Список состоявшихся семинаров

No	Дата	Авторы и название статьи (фамилия докладчика выделена жирным шрифтом)
1	22.10.2020	Н. Аль Битар , А.И. Гаврилов «Сравнительный анализ алгоритмов комплексирования в слабосвязанной инерциально-спутниковой системе на основе обработки реальных данных» [2]
2	26.10.2020	Н. Аль Битар , А.И. Гаврилов, В. Халаф «Методы на основе искусственного интеллекта для повышения точности интегрированной навигационной системы при отсутствии сигнала ГНСС. Аналитический обзор» [3]
3	11.02.2021	Б.В. Климкович «Влияние случайной погрешности температурных датчиков на качество температурной компенсации смещения нуля ВОГ нейронной сетью» [4].
4	6.04.2021	«Вариация Аллана. Как это работает?» Докладчики А.В.Моторин , Н.Н. Наумов
5	14.09.2021	К.В. Дунаевская , Л.В. Киселев, В.Б. Костоусов «Исследование метода вычисления текущей характеристики точности в задаче навигации по картам геофизических полей» [5]

6	11.11.2021	Е.А. Попов «Скалярная калибровка. Анализ различных аспектов» [6]
7	31.03.2022	О.А. Степанов, Ю.А. Литвиненко, В.А. Васильев, А.Б. Торопов, М.В. Басин «Алгоритм полиномиальной фильтрации в задачах обработки навигационной информации при квадратичных нелинейностях» [7, 8]
8	13.09.2022	Т.А. Тормагов, А.А. Генералов, М.Ю. Шавин, Л.Б. Рапопорт «Задачи управления движением автономных колесных роботов в точном земледелии» [9]
9	17.02.2023	М.Ю. Беляев , О.Н. Волков, О.Н. Соломина, Г.М. Тертицкий «Исследование миграций животных с помощью научной аппаратуры «Икарус» в космическом эксперименте «Ураган» на российском сегменте МКС» [10]
10	24.08.2023	Ю.М. Матвиенко «Оценка практически достижимой точности современных гидроакустических навигационных систем с ультракороткой измерительной базой для подводных роботов» [11]
11	14.11.2023	О.А. Степанов, А.М. Исаев «Методика сравнительного анализа рекуррентных алгоритмов нелинейной фильтрации в задачах обработки навигационной информации на основе предсказательного моделирования» [12] Д.О. Тарановский
		«Современное состояние и перспективы развития журнала «Гироскопия и навигация» [13].
12	19.09.2024	А.В. Гриненков, А.И. Машошин «Алгоритм определения координат и параметров движения подводного источника шумоизлучения без специального маневрирования наблюдателя» [14].
13	4.03.2025	Н.Н. Василюк, Г.А. Нефедов, Е.А. Сидорова, Н.О. Шагимуратова «Астрономическая калибровка бесплатформенной астроинерциальной навигационной системы. Части 1 и 2» [15, 16]
14	23.04.2025	М.Ю. Беляев , П.А. Боровихин, Д.Ю. Караваев «Автономная навигация в пилотируемых космических полетах и отработка в эксперименте «Вектор-Т» на МКС технологии определения параметров орбиты по снимкам планеты» [17]
15	15.10.2025	А.В. Фомичев «Оценка и компенсация погрешностей счисления бесплатформенной инерциальной навигационной системы, вызванных влиянием запаздываний в трактах инерциальных датчиков» [18]

О некоторых семинарах подробно

Каждый из семинаров собирает участников, заинтересованных в обсуждении тематики той или иной статьи. Их число бывает разным — от 30 до более 80 человек, большинство из которых присутствуют онлайн. Начиная с третьего семинара в феврале 2021 г., когда была снята основная часть ограничений, связанных с пандемией COVID-19, центром, откуда идет трансляция и где, как правило, присутствуют ведущий и группа слушателей, является зал Ученого совета АО «Концерн «ЦНИИ «Электроприбор». В качестве ведущего семинаров чаще всего выступает заместитель главного редактора журнала член-корр. РАН О.А. Степанов, однако в этой роли выступали также еще один заместитель главного редактора — к.т.н. Б.С. Ривкин (АО «Концерн «ЦНИИ «Электроприбор»), члены редколлегии д.ф.-м.н. А.А. Голован (МГУ им. М.В. Ломоносова) и д.т.н. Ю.А. Литманович (АО «Концерн «ЦНИИ «Электроприбор»).

Можно отметить некоторые особенности ряда семинаров.

Например, состоявшаяся 6 апреля 2021 г. встреча, посвященная теме «Вариация Аллана. Как это работает?», стала продолжением дискуссии, развернувшейся на секции «Обработка измерительной информации» XXIII конференции молодых ученых «Навигация и управление движением». Разговор шел об общих подходах к использованию вариации Аллана, что и было отражено в сообщении к.т.н. А.В. Моторина (АО «Концерн «ЦНИИ «Электроприбор»). Затем выступил Н.Н. Наумов (АПИ(ф) НГТУ им. Р.Е. Алексеева, г. Арзамас) с докладом «Анализ шумовых характеристик нулевого сигнала инерциальных датчиков с помощью вариации Аллана на основе машинного обучения».

31 марта 2022 г. член-корр. РАН О.А. Степанов представил на обсуждение статью, подготовленную совместно с Ю.А. Литвиненко, В.А. Васильевым, А.Б. Тороповым, М.В. Басиным [7, 8]. Работа в двух частях опубликована в №3 и 4 журнала за 2021 г. Первая часть посвящена описанию предлагаемого алгоритма, а также его сопоставлению с алгоритмами калмановского типа, во второй приведены примеры решения конкретных задач.

С докладом выступает О.А. Степанов

Вел семинар к.т.н. Б.С. Ривкин. Участники задали большое количество уточняющих вопросов, и в ходе обмена мнениями был высказан ряд идей об использовании представленных алгоритмов и их эффективности в сравнении с другими известными методами.

17 февраля 2023 г. состоялся семинар, на котором обсуждалась статья «Исследование миграций животных с помощью научной аппаратуры «Икарус» в космическом эксперименте «Ураган» на российском сегменте МКС» [10], опубликованная в третьем номере журнала за 2022 г. С докладом выступил один из авторов – д.т.н., профессор Михаил Юрьевич Беляев (ПАО «РКК «Энергия» им. С.П. Королева).

М.Ю. Беляев

М.Ю. Беляев рассказал о создании наземной и космической аппаратуры, которая позволяет отслеживать перемещение животных и любых других объектов благода-

ря закрепленным на них специальным датчикам - тэгам, чей вес составляет менее 5 г. Развитие программы осуществлялось в сотрудничестве с Институтом изучения поведения животных Общества Макса Планка (Германия). Исследовались миграции некоторых видов птиц, а также млекопитающих, в результате чего получен большой объем данных.

Помимо привычной аудитории – специалистов по навигации, в этот раз на семинаре присутствовали биологи, которые занимаются вопросами миграции птиц и животных.

Активное участие в обсуждении статьи принял директор Зоологического института РАН (Санкт-Петербург) д.б.н., профессор, член-корр. РАН Никита Севирович Чернецов.

Во время дискуссии неоднократно высказывались идеи о большом потенциале для исследований, который предоставляет описанная в статье аппаратура. Особенностью этого семинара стало то, что в нем приняли участие представители различных предметных областей, и это было хорошей возможностью обсудить проблемы на стыке двух научных дисциплин.

Н.С. Чернецов

Дискуссия вызвала настолько высокий интерес, что стало понятно: надо продолжить взаимодействие со специалистами в области навигации живых существ. В результате в рамках XXV конференции молодых ученых с международным участием «Навигация и управление движением» был организован семинар «Физиологические основы навигации птиц». С докладами выступили несколько ученых-биологов из Зоологического института РАН. Директор института член-корр. РАН Н.С. Чернецов выступил с обзорным докладом «Механизмы ориентации и навигации у птиц», в котором рассказал о том, что благодаря многочисленным экспериментам удалось обнаружить наличие у птиц трех «встроенных» в их организм «компасов» – солнечного, звездного и магнитного. Кроме того, оказалось, что у птиц есть и «внутренние карты» – магнитная и основанная на обонянии.

На семинаре 19 сентября 2024 г. выступил д.т.н., профессор Андрей Иванович Машошин (АО «Концерн «ЦНИИ «Электроприбор»), изложивший основные тезисы работы «Алгоритм определения координат и параметров движения подводного источника шумоизлучения без специального маневрирования наблюдателя» [13]. Статья была выбрана путем опроса читателей: она получила наибольшее количество голосов (40%). После доклада слушатели задали ряд вопросов и состоялась дискуссия.

Надо сказать, что при рассылке приглашений на семинар редакция неизменно предлагает участникам заранее присылать свои вопросы и замечания к статье. Такой возможностью пользуются не всегда, однако на этот раз дискуссия развернулась еще до начала мероприятия. Один из постоянных авторов и читателей нашего журнала к.ф.-м.н. Н.Н. Василюк (ООО «НПК Электрооптика», Москва) предварительно сформулировал ряд острых вопросов авторам и указал на некоторые неточности в опубликованной работе. Завязалась оживленная переписка, а затем обмен мнениями продолжился непосредственно на семинаре, по итогам которого развернутая рецензия в форме письма в редакцию и ответ на него авторов были опубликованы в четвертом номере журнала за 2024 г. [19].

На следующем семинаре 4 марта 2025 г. уже сам Николай Николаевич Василюк представил свою работу на суд слушателей. Он сделал доклад по статье в двух частях, вышедшей соответственно во втором и третьем номерах журнала за 2024 г. под названием «Астрономическая калибровка бесплатформенной астроинерциальной навигационной системы» [13, 14]. Вел семинар член редколлегии д.т.н., профессор Андрей Андреевич Голован (МГУ им. М.В. Ломоносова, Москва).

15 октября 2025 г. состоялась уже 15-я встреча читателей с автором статьи [18].

В рамках одной заметки невозможно рассказать о каждом семинаре — все они интересны по-своему. Эти мероприятия неизменно собирают специалистов по тому или иному научному направлению, которые обсуждают здесь актуальные проблемы. Количество участников различно и связано с тем, как много научных коллективов занимаются тематикой, соответствующей обсуждаемой статье. Как правило, на семинаре присутствуют несколько десятков человек из разных городов нашей страны.

Заключение

Опыт проведения семинаров, по многочисленным отзывам, оказался успешным и полезным как для автора, который имеет возможность обсудить результаты своей работы с коллегами, так и для участников дискуссии, включая членов редколлегии и рецензентов журнала. Читатели могут лучше познакомиться с заинтересовавшей их работой и узнать детали, оставшиеся за рамками опубликованной работы. При этом статья уже прошла все этапы рецензирования, а значит, представляет собой верифицированный научный результат. В этом и заключаются главные отличия семинаров от обсуждений докладов на конференциях.

Немаловажно и то, что обсуждение общих проблем учеными из различных городов и организаций способствует поддержанию и развитию российской школы гироскопии и навигации и формирует сообщество постоянных авторов и читателей журнала «Гироскопия и навигация».

Редакция принимает заявки от авторов, готовых обсудить свои статьи в формате онлайн-семинара по e-mail: editor@eprib.ru.

Информация о предстоящих семинарах размещается на сайтах журнала «Гироскопия и навигация» (http://gyroscopy.ru) и Академии навигации и управления движением (http://acanud.ru). Ждем как докладчиков, так и слушателей и всех приглашаем активно участвовать в дискуссиях, в которых, как известно, рождается истина.

ЛИТЕРАТУРА

- 1. Степанов О.А., Тарановский Д.О. Опыт организации конференций в условиях пандемии // Управление наукой: теория и практика. 2022. Т. 4, № 2. С. 183–200. DOI: 10.19181/smtp.2022.4.2.16.
- 2. Аль Битар Н., Гаврилов А.И. Сравнительный анализ алгоритмов комплексирования в слабосвязанной инерциально-спутниковой системе на основе обработки реальных данных // Гироскопия и навигация. 2019. Т. 27. № 3 (106). С. 31–52.
- 3. Аль Битар Н., Гаврилов А.И., Халаф В. Методы на основе искусственного интеллекта для повышения точности интегрированной навигационной системы при отсутствии сигнала ГНСС. Аналитический обзор // Гироскопия и навигация. 2019. Т. 27. № 4 (107). С. 3–28.
- **4. Климкович Б.В.** Влияние случайной погрешности температурных датчиков на качество температурной компенсации смещения нуля ВОГ нейронной сетью // Гироскопия и навигация. 2020. Т. 28. № 4. С. 53–70.
- Дунаевская К.В., Киселев Л.В., Костоусов В.Б. Исследование метода вычисления текущей характеристики точности в задаче навигации по картам геофизических полей // Гироскопия и навигация. 2021. Т. 29. №1 (112). С. 52–69.

- Егоров Ю.Г., Попов Е.А. Анализ погрешностей скалярной калибровки векторного измерителя // Гироскопия и навигация. 2020. Т.29. №4 (111). С. 37–52.
- 7. Степанов О.А., Литвиненко Ю.А., Васильев В.А., Торопов А.Б., Басин М.В. Алгоритм полиномиальной фильтрации в задачах обработки навигационной информации при квадратичных нелинейностях в уравнениях динамики и измерений. Часть 1. Описание и сопоставление с алгоритмами калмановского типа // Гироскопия и навигация. 2021. Т. 29. №3 (114). С. 3–33.
- 8. Степанов О.А., Литвиненко Ю.А., Васильев В.А., Торопов А.Б., Басин М.В. Алгоритм полиномиальной фильтрации в задачах обработки навигационной информации при квадратичных нелинейностях в уравнениях динамики и измерений. Часть 2. Примеры решения задач // Гироскопия и навигация. 2021. Т. 29. №4 (115). С. 56–77.
- 9. Тормагов Т.А., Генералов А.А., Шавин М.Ю., Рапопорт Л.Б. Задачи управления движением автономных колесных роботов в точном земледелии // Гироскопия и навигация. 2022. Т. 30. №1 (116). С. 39–60.
- 10. Беляев М.Ю., Волков О.Н., Соломина О.Н., Тертицкий Г.М. Исследование миграций животных с помощью научной аппаратуры «Икарус» в космическом эксперименте «Ураган» в РС МКС // Гироскопия и навигация. 2022. Т. 30. №3 (118). С. 3–19.
- 11. Матвиенко Ю.В. Оценка практически достижимой точности современных гидроакустических навигационных систем с ультракороткой измерительной базой для подводных роботов // Гироскопия и навигация. 2023. Т. 31. №2 (121). С. 106–120.
- 12. Степанов О.А., Исаев А.С. Методика сравнительного анализа рекуррентных алгоритмов нелинейной фильтрации в задачах обработки навигационной информации на основе предсказательного моделирования // Гироскопия и навигация. 2023. Т. 31. №3 (122). С. 48–65.
- 13. Тарановский Д.О. Редакционная политика продвижения научного периодического издания (на примере журнала «Гироскопия и навигация») // Научный редактор и издатель. 2022. Т. 7. № 1. С. 70–80.
- **14.** Гриненков А.В., Машошин А.И. Алгоритм определения координат и параметров движения подводного источника шумоизлучения без специального маневрирования наблюдателя // Гироскопия и навигация. 2024. Т. 32. №2 (125). С. 98–122.
- **15.** Василюк Н.Н., Нефедов Г.А., Сидорова Е.А., Шагимуратова Н.О. Астрономическая калибровка бесплатформенной астроинерциальной навигационной системы. Часть 1: Калибровка относительной ориентации цифровых камер // Гироскопия и навигация. 2024. Т. 32. №2 (125). С. 66–84.
- 16. Василюк Н.Н., Нефедов Г.А., Сидорова Е.А., Шагимуратова Н.О. Астрономическая калибровка бесплатформенной астроинерциальной навигационной системы. Часть 2: Калибровка относительной ориентации инерциальных и астрономических измерителей // Гироскопия и навигация. 2024. Т. 32. №3 (126). С. 66–85.
- **17. Беляев М.Ю., Боровихин П.А., Караваев Д.Ю.** Автономная навигация в пилотируемых космических полетах и отработка в эксперименте «Вектор-Т» на МКС технологии определения параметров орбиты по снимкам планеты // Гироскопия и навигация. 2024. Т. 32. №4 (127). С. 88–104.
- **18.** Фомичев А.В. Оценка и компенсация погрешностей счисления бесплатформенной инерциальной навигационной системы, вызванных влиянием запаздываний в трактах инерциальных датчиков // Гироскопия и навигация. 2025. Т. 33. №4 (129). С. 3–20.
- Василюк Н.Н., Машошин А.И., Гриненков А.В. Письмо в редакцию. Ответ авторов // Гироскопия и навигация. 2024. Т. 32. №4 (127). С. 145–158.

Секретарь редколлегии журнала Д.О. Тарановский (АО «Концерн «ЦНИИ «Электроприбор»)