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МЕТОДЫ НА ОСНОВЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА  
ДЛЯ ПОВЫШЕНИЯ ТОЧНОСТИ ИНТЕГРИРОВАННОЙ  

НАВИГАЦИОННОЙ СИСТЕМЫ ПРИ ОТСУТСТВИИ СИГНАЛА ГНСС. 
АНАЛИТИЧЕСКИЙ ОБЗОР

Ограничения при использовании фильтра Калмана (ФК) послу-
жили стимулом для изучения альтернативных методов интегра-
ции инерциальных навигационных систем (ИНС) с глобальными 
навигационными спутниковыми системами (ГНСС), в основе ко-
торых лежат технологии искусственного интеллекта (ИИ). За 
последние два десятилетия появилось большое количество иссле-
дований, обосновывающих возможности использования техноло-
гий ИИ в области интегрированных навигационных систем. Были 
предложены различные способы объединения модулей ИИ с други-
ми частями системы ИНС/ГНСС. В статье представлена новая 
классификация этих схем, основанная на функциональных харак-
теристиках модулей ИИ в системе ИНС/ГНСС. Дается также 
краткое пояснение к каждой схеме с описанием ее преимуществ 
и недостатков. Рассматриваются некоторые аспекты, которые 
необходимо учитывать в будущих исследованиях в этой области. 

Ключевые слова: инерциальные навигационные системы, глобальные на-
вигационные спутниковые системы, искусственный интеллект, нейронные 
сети, фильтр Калмана.

Введение

ГНСС успешно используются в течение последних трех десятилетий. В основе 
действия этих систем – измерение расстояний от нескольких спутников с известным 

Аль Битар Надер. Аспирант кафедры «Системы автоматического управления», Московский Государ-
ственный Технический Университет (МГТУ) им. Баумана (Россия).
Гаврилов Александр Игоревич. Кандидат технических наук, доцент кафедры «Системы автоматиче-
ского управления», МГТУ им. Н.Э. Баумана.
Халаф Вассим. Начальник лаборатории навигации, Институт прикладных наук и технологий (Дамаск, 
Сирия).



4	 Гироскопия и навигация. Том 27. №4 (107), 2019

Н. Аль Битар, А. И. Гаврилов, В. Халаф

положением на орбитах. Предполагается, что не менее трех спутников ГНСС всегда 
видны из большинства точек на поверхности Земли, а для круглосуточного опреде-
ления местоположения наблюдателя в любом месте на поверхности Земли исполь-
зуется не менее четырех спутников ГНСС [1]. Основная цель ГНСС заключается  
в формировании сигнала, по которому специальный приемник в режиме реального 
времени точно определяет свое местоположение и скорость в трех измерениях. Бла-
годаря этому можно получить информацию о текущем местоположении и направле-
нии движения транспортного средства. Помимо глобальной доступности, ГНСС яв-
ляются портативными системами с низким энергопотреблением, которые подходят 
для интеграции датчиков и способны обеспечить точную и недорогую навигацию 
неограниченному числу пользователей в любой точке планеты [2]. С момента вне-
дрения ГНСС круг прикладных задач, для решения которых применяются эти систе-
мы, резко расширился и обеспечивает отслеживание перемещения людей, колонн 
грузовых автомобилей, поездов, судов или самолетов и определение скорости их 
движения, а также навигацию с использованием мобильных телефонов, картографи-
рование городских объектов и т.д. [3]. Одним из наиболее важных свойств ГНСС яв-
ляется то, что ее точность не ухудшается со временем; это означает, что погрешность 
позиционирования (и определения скорости) ограничена. Сигнал ГНСС может быть 
потерян полностью или частично при движении через туннели или вблизи строи-
тельных объектов. Сильное электромагнитное излучение также ухудшает качество 
сигнала ГНСС [2]. Кроме того, на него влияет состояние тропосферы (температура, 
давление, влажность) и ионосферы. Еще одним недостатком ГНСС является исполь-
зование энергии радиоволн для получения навигационных параметров. Таким об-
разом, эти системы подвержены воздействию искусственных помех и спуфингу [1]. 
Еще одним ограничением применения ГНСС является невысокая скорость передачи 
данных (например, при использовании коммерческих приемников). На сегодняш-
ний день ни одна сложная наземная или воздушная система навигации, для которой 
критически важно непрерывно и с высокой скоростью определять местоположение  
(и скорости), не может работать, используя исключительно ГНСС.

Что касается ИНС, то эти системы способны обеспечить высокоскоростную вы-
работку данных о местоположении, скорости и ориентации в автономном режиме. 
ИНС состоят из двух основных блоков – инерциального измерительного модуля 
(ИИМ) и бортового (навигационного) компьютера. ИИМ обычно содержат триады 
гироскопов и акселерометров, расположенных ортогонально друг к другу и изме-
ряющих соответственно угловую скорость и линейное ускорение. Для получения 
требуемых навигационных параметров (местоположение, скорость и ориентация) 
сигналы от этих устройств обрабатываются путем интегрирования исходных инер-
циальных измерений ИИМ. Процесс интегрирования осуществляется с помощью 
набора кинематических уравнений в навигационном компьютере [4]. Как правило, 
ИИМ подразделяют на две основные категории в зависимости от того, как платфор-
ма с датчиками привязана к несущему объекту [5]. К первой категории относятся 
карданные системы, в которых платформа изолирована от вращательного движения 
несущего объекта карданным подвесом с электродвигателем. Этот тип системы ис-
пользуется, в частности, в областях, где требуются очень точные оценки навигаци-
онных данных, например на кораблях и подводных лодках. Вторая категория – это 
бесплатформенные ИНС (БИНС), которые с технической точки зрения менее сложны, 
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чем платформенные, за счет жесткой фиксации датчиков на корпусе носителя [1]. В ре-
зультате БИНС отличаются от платформенных систем меньшими габаритами и более 
высокой надежностью, а также более низкой стоимостью. Благодаря этому компакт-
ные, легкие и точные БИНС теперь можно устанавливать в небольшие устройства, 
такие как мобильные телефоны. ИИМ по точности инерциальных датчиков подразде-
ляются на навигационные, тактические и коммерческие. Несмотря на то что послед-
ние достижения в области ИНС и компьютерных технологий позволили уменьшить 
размеры и повысить точность и стабильность ИНС, высококачественные ИИМ пока 
не могут широко использоваться в коммерческих наземных и воздушных навигацион-
ных системах из-за высокой стоимости и законодательных ограничений.

Разработка микроэлектромеханических систем (МЭМС [6]) открыла большие 
перспективы развития ИИМ. Благодаря миниатюрным размерам и весу, низкому 
энергопотреблению и при этом высокой надежности МЭМС нашли широкое приме-
нение в автотранспортной промышленности и других отраслях. 

ИНС не может работать в автономном режиме из-за погрешностей датчиков  
и нарастающих во времени погрешностей интегрирования. В частности, это спра-
ведливо для БИНС, на показания инерциальных датчиков которой воздействует пол-
ный диапазон изменений курса и ориентации, а также угловая скорость движения 
транспортного средства.

Погрешности инерциальных датчиков могут быть как детерминированными, так 
и случайными. Детерминированные погрешности можно определить с помощью ка-
либровочных процедур и затем удалить из необработанных измерений. Для опреде-
ления случайных погрешностей необходимо создавать стохастические модели, что-
бы свести к минимуму их негативное влияние на точность навигационного решения. 
Из-за этого точность выходных данных ИНС сохраняется только в течение ограни-
ченного времени, особенно в недорогих БИНС на основе МЭМС, где ухудшение 
параметров происходит гораздо быстрее, чем в ИНС других типов. 

Чтобы устранить недостатки ИНС или ГНСС, связанные с их автономным функ-
ционированием, и в то же время использовать их преимущества, их часто объединя-
ют в одну систему, которая получила название интегрированной навигационно-спут-
никовой системы (ИНС/ГНСС). Она позволяет получать точные навигационные 
решения, при этом по сравнению с ГНСС и ИНС по отдельности обеспечиваются 
лучшие характеристики. ГНСС характеризуются постоянной, долговременной точ-
ностью, и их можно использовать для обновления составляющих местоположения 
и скорости, вырабатываемых ИНС, что позволит решить проблему накопления 
погрешностей ИНС с течением времени. В свою очередь, ИНС обеспечивает точ-
ную оперативную информацию, которую можно использовать для решения таких 
проблем, связанных с ГНСС, как блокирование сигнала, проскальзывание цикла  
и тактовые смещения [7]. Существует четыре уровня интеграции ИНС/ГНСС [8]: не-
связанные, слабо-, сильно- и глубокосвязанные системы, которые классифицируют-
ся по «глубине» взаимодействия и объему передаваемой информации между ними.  
В раздельной схеме и ИНС и ГНСС работают независимо друг от друга, при этом 
выходные данные ИНС периодически корректируются по измерениям ГНСС, однако 
обратная связь, необходимая для обновления измерительной модели инерциальных 
датчиков, отсутствует. В слабосвязанных системах данные ГНСС обрабатываются 
вместе с информацией от ИНС, чтобы в итоге получить выходные данные инте-
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грированной системы. Сильносвязанные системы характеризуются более глубоким 
уровнем интеграции, поскольку необработанные измерения ГНСС непосредственно 
объединяются с данными ИНС в специальном фильтре. В случае глубокосвязанной 
интеграции обе не работают независимо друг от друга: измерения ГНСС использу-
ются для оценки погрешностей ИНС, а измерения ИНС являются вспомогательной 
информацией для контуров слежения приемника ГНСС. При таком глубоком уровне 
интеграции требуется доступ ко встроенному программному обеспечению прием-
ника, что обычно делается либо на заводе-изготовителе, либо за счет использования 
программируемых приемников [8]. По этой причине наиболее распространены сла-
бо- и сильносвязанные системы.

Для интеграции данных ИНС и ГНСС используются различные алгоритмы об-
работки, из которых наиболее популярны байесовские методы фильтрации, такие 
как фильтры Калмана (ФК), в том числе обобщенный фильтр Калмана (ОФК) [9]  
и ансцентный фильтр Калмана (АФК) [10]. Если динамические и стохастические мо-
дели погрешностей ГНСС и ИНС сформированы корректно, фильтр Калмана спосо-
бен обеспечить очень точное позиционирование при условии наличия непрерывных 
сигналов ГНСС. При пропадании сигналов ГНСС ФК работает в режиме прогнози-
рования и корректирует измерения ИНС на основании модели погрешностей систе-
мы. ФК характеризуется вычислительной эффективностью, что особенно полезно 
для решения задач в режиме реального времени. Вместе с тем фильтр  имеет и свои 
ограничения. Основным недостатком, связанным с использованием ФК для инте-
грированной ИНС/ГНСС, является необходимость иметь точную стохастическую 
модель каждой составляющей погрешности датчика [11]. Если системы навигаци-
онного класса и высококачественные системы тактического класса имеют стохасти-
ческие погрешности, которые вполне можно смоделировать надлежащим образом, 
то моделирование погрешностей для недорогих систем тактического класса и ИИМ 
на основе МЭМС вызывает серьезные затруднения. Кроме того, ФК имеет ряд дру-
гих существенных недостатков, к которым в частности относятся зависимость от 
датчиков и проблемы с наблюдаемостью [12–13]. 

Ограничения ФК дали толчок исследованиям альтернативных методов интеграции 
ИНС/ГНСС преимущественно на базе ИИ [14], которому уделяется все больше вни-
мания при разработке технологий будущего, особенно это касается развития совре-
менных компьютерных технологий в области программно-технических средств. Было 
доказано, что ИИ является успешным и эффективным инструментом при решении 
определенных научно-технических задач, для которых не подходят традиционные ме-
тоды [14]. Цель технологий ИИ, к которым относятся искусственные нейронные сети 
[15], нейро-нечеткие системы [16], вычисления с помощью эволюционных алгорит-
мов [17], экспертные системы [18], генетические алгоритмы [19] и др., заключается 
в обеспечении значительного уровня интеллекта и робастности в сложных и неопре-
деленных системах, подобных некоторым биологическим [20]. По сравнению с ФК 
алгоритмы ИИ обладают рядом преимуществ, которые представлены в табл. 1.

Применение методов ИИ в области интеграции ИНС/ГНСС стало предметом мно-
жества исследований. Ученые использовали различные подходы для объединения 
одного или нескольких модулей ИИ с остальной частью ИНС/ГНСС. Практически 
все конструктивные решения разделяются на две основные категории: 1) интеграция 
ИНС/ГНСС с использованием только ИИ, причем модуль ИИ замещает ФК; 2) ин-
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теграция ИНС/ГНСС, при которой модуль ИИ комбинируется с ФК для повышения 
общей точности навигации. Каждая из этих двух категорий делится на подкатегории 
в соответствии с типами модулей ИИ или с входными/выходными данными модуля 
ИИ. В первом случае применяется раздельная схема интеграции ИНС и ГНСС, во 
втором – слабосвязанная. 

Следует отметить, что сильно- и глубокосвязанные схемы интеграции исполь-
зуются в ряде областях, в которых нельзя обойтись без технологий ИИ, однако  
в данной работе рассматриваются только случаи раздельных (категория 1) и сла-
босвязанных (категория 2) схем интеграции. С сильно- и глубокосвязанными систе-
мами читатель может ознакомиться, например, в [21, 22].  

Т а б л и ц а  1 
Сравнение алгоритмов ИИ и ФК

Свойство ФК ИИ

Зависимость от модели
Математическая модель;

детерминированная модель + 
стохастическая модель

Эмпирическая и адаптивная 
модель

Априорные знания
Необходимы (в основном измерения 
и ковариационные матрицы векторов 

состояний)

Не требуются, но необходимо 
предварительное 

обучение

Зависимость от датчиков
Для различных систем требуется 

перепроектирование или перенастройка 
параметров ФК

Алгоритм не зависит от 
системы

Линейность Линейная обработка (ОФК) Нелинейная обработка

Настоящая статья посвящена применениям технологий ИИ в области интегриро-
ванных навигационных систем для повышения точности при пропадании сигналов 
ГНСС. Основное внимание уделяется различным архитектурам систем 1 и 2 катего-
рий с описанием преимуществ и недостатков каждой из них. 

Остальная часть статьи организована следующим образом: в разделах II и III рас-
сматриваются первая и вторая категории соответственно. В разделе IV приводится 
сравнительный анализ всех предлагаемых схем. Проблемы, связанные с применени-
ем ИИ в системах ИНС/ГНСС, анализируются в разделе V. В разделе VI подводятся 
итоги.

Интеграция ИНС/ГНСС с использованием ИИ

В данном случае модуль(и) ИИ применяется вместо ФК, при этом используют-
ся различные типы архитектур, а именно: архитектура коррекции местоположения 
(Position Update Architectures, PUA) [23], архитектура погрешности местоположения 
(Position-Position Error, или P–δP) [24] и комбинированная архитектура P–δP и V–δV 
(Velocity-Velocity Error), или P–δP + V–δV [25].

А. Архитектура коррекции местоположения

Архитектура коррекции местоположения PUA впервые была предложена в [23]. 
Для комплексирования данных БИНС и ГНСС и воспроизведения динамической 
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модели движущегося транспортного средства, несущего обе системы, используется 
многослойная персептронная нейронная сеть (Multilayer Perceptron Neural Network, 
MLPNN) [15] (далее будем именовать эту архитектуру PUA_MLP). Входные данные 
сети – скорость ( )INSV t  и азимут ( )INS tψ , полученные от ИНС. Выходными данными 
сети являются два показателя: ( ) ( ),PUA PUAE t N t∆ ∆  – разницы координат между дву-
мя различными последовательными периодами для северной и восточной состав-
ляющих координат, как показано на рис. 1, а. Пока доступен сигнал ГНСС, благодаря 
процессу обучения продолжает уменьшаться погрешность оценивания, что позволяет 
получить оптимальные значения весов нейронной сети, как показано на рис. 1, b. Когда 
сигнал ГНСС пропадает, MLPNN работает в режиме прогнозирования, чтобы получить 
оценки восточной и северной составляющих координат ( ) ( ) ,PUA PUAE t N t∆ ∆ , как показа-
но на рис. 1, c. Для обучения PUA_MLP используется метод обратного распростра-
нения [15]. Было показано, что схема PUA обеспечивает более высокую точность 
позиционирования, чем обычный метод интеграции с помощью ФК при пропадании 
сигнала ГНСС (когда сеть PUA и ФК работают в режиме прогнозирования). Вместе 
с тем возникали трудности с выбором наиболее подходящей внутренней структуры 
MLPNN (количество скрытых слоев и количество нейронов в каждом слое). Кроме 
того, период обучения MLPNN оказался достаточно длительным, что не подходит 
для работы в режиме реального времени. 

Рис. 1. Архитектура коррекции местоположения PUA с использованием MLPNN:  
a – топология MLPNN; b – режим обучения; c – режим прогнозирования

Для решения вышеупомянутых проблем в PUA_MLP [23] авторы работы [26] 
предложили заменить MLPNN в PUA сетью каскадной корреляции (Cascade-
Correlation Network, CCN) [27]. Получившуюся архитектуру можно обозначить как 
PUA_CCN. Гибкость и непрерывное обучение, позволяющие осуществлять регу-
лировку весов и корректное изменение топологии, повышают эффективность CCN 
при интеграции ИНС/ГНСС по сравнению с сетями с фиксированной топологией, 
в том числе MLPNN. Создание интегрированных систем ИНС/ГНСС требует бо-
лее гибкого подхода при отслеживании динамики движения транспортного средства  
и погрешности ИНС, особенно если при этом применяется недорогая система. Тех-
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нология на основе CCN не требует априорных знаний или эмпирической проверки, 
чтобы реализовать предлагаемую архитектуру, поскольку способна построить свою 
архитектуру «на ходу», основываясь на изменениях динамики транспортного сред-
ства [26]. Результаты показали более высокую эффективность CCN по сравнению 
с MLPNN и ФК для интеграции ИНС/ГНСС. Предложенная схема на основе CCN 
продемонстрировала такие же характеристики, что схема на основе MLPNN, но  
с меньшим количеством скрытых нейронов.  

В работе [28] авторы предложили заменить MLPNN в PUA алгоритмом типа 
«случайного леса» (Random Forest Regression, RFR) [29] – усовершенствованным ме-
тодом классификации на основе решающих древовидных структур, получившим рас-
пространение благодаря своей надежности и гибкости при моделировании ввода–вы-
вода функциональных соотношений [29]. Предложенная модель PUA_RFR обучалась 
при наличии сигналов ГНСС, затем использовалась для прогнозирования координат 
места во время потери сигнала. Показано, что модель PUA_RFR повышает точность 
автономной ИНС по сравнению с PUA_MLP. При этом модели PUA_CCN и PUA на 
основе RFR между собой не сравнивались.

Хотя все вышеупомянутые архитектуры PUA можно применить и для прогнози-
рования высоты, на которой будет находиться транспортное средство, их реализация 
была ограничена навигационными решениями в плоскости горизонта, подходящи-
ми для наземных транспортных средств, поскольку нет необходимости определять 
высоту их нахождения. Тем не менее это имеет большое значение для воздушных 
транспортных средств. Кроме того, архитектура PUA не способна оценить скорость 
и ориентацию объекта. 

Б. Архитектура P–δP 

Архитектура P–δP была впервые предложена в [24] при попытке разработать 
специальный модуль, который функционирует аналогично ФК, но не нуждается  
в динамических или стохастических моделях для ИНС. Интеграция ИНС/ГНСС на 
основе архитектуры P–δP базируется на оценке погрешности положения ИНС INSPδ  
путем обработки положения ИНС INSP . Предлагаемая архитектура имеет два режима 
работы – коррекции и прогнозирования (рис. 2). Режим коррекции используется при 
доступности сигналов ГНСС для обновления внутренней структуры модуля ИИ, ре-
жим прогнозирования – для коррекции положения ИНС при потере сигнала ГНСС. 
Таким образом, при наличии сигнала ГНСС модуль P–δP обучается распознавать 
закономерности изменения погрешности координат, содержащейся во входных дан-
ных. В случае блокировки спутникового сигнала модуль P–δP имитирует последнее 
перемещение транспортного средства и обеспечивает прогноз погрешности его ко-
ординат. Координаты ИНС INSP  и время  являются входными сигналами для модуля, 
в то время как погрешность координат ИНС INSPδ  является выходными параметрами 
модуля. Оценка погрешности координат ИНС INSPδ , обеспечиваемая модулем, затем 
сравнивается с разностью между исходными координатами ИНС и соответствующи-
ми координатами ГНСС /GNSS INSPδ , и результаты сравнения используются в качестве 
входных данных для алгоритма обучения и корректировки внутренней структуры 
модуля ИИ. 
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Три сети MLPNN применяются для моделирования трех составляющих погреш-
ности координат в восточном, северном и вертикальном направлениях. Входной слой 
каждой сети имеет два входных нейрона для составляющих координат ИНС и време-
ни, в то время как выходной слой имеет только один выходной нейрон для соответ-
ствующей погрешности координат ИНС. Сети MLPNN обучаются по алгоритму об-
ратного распространения с правилом обучения Левенберга–Марквардта (LM) [30]. 
Результаты показали, что архитектура P–δP на основе MLPNN имеет преимущество 
перед ФК в точности позиционирования. Тем не менее в [24] не была приведена 
информация о том, учитывали ли при реализации ФК модели измерений инерциаль-
ных датчиков и ГНСС. Кроме того, следует отметить, что для проверки этого мето-
да использовались измерения ИНС навигационного класса и не было представлено 
никакой информации о его эффективности при использовании тактических или не-
дорогих ИНС на основе МЭМС. Сложность, связанная как с архитектурой MLPNN, 
так и с его алгоритмами онлайн-обучения, ограничивает возможности применения 
этого метода в режиме реального времени. 

Рис. 2. Архитектура P–δP: a – режим обучения; b – режим прогнозирования

В [31] было предложено заменить MLPNN в архитектуре P–δP радиально-базис-
ной функцией нейронной сети (РБФНС) [15]. В отличие от MLPNN, РБФНС име-
ет более простую архитектуру, состоящую только из трех слоев (входной, скрытый  
и выходной), и, следовательно, более простые и быстрые процедуры обучения. По-
лученные результаты продемонстрировали также превосходство предложенного ме-
тода над ФК в точности позиционирования. 

Основным недостатком как архитектур P–δP на базе РБФНС, так и MLPNN явля-
ется то, что обучение осуществляется с использованием всех данных ИНС и ГНСС, 
доступных до отключения ГНСС, что нецелесообразно и практически невозможно 
реализовать в режиме реального времени из-за длительности обучения.

Позднее те же авторы в работе [32] предложили процедуру обучения, основан-
ную на методе скользящего окна. Для каждого из трех модулей РБФНС из обеих 
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систем был получен ряд выборок (называемых окном W) составляющих координат 
ИНС INSP  и соответствующих координат ГНСС GNSSP . Модуль РБФНС устанавли-
вается и обновляется в этом окне. Для задач в режиме реального времени модуль 
РБФНС обучается до того момента, пока не будет достигнута определенная мини-
мальная среднеквадратическая погрешность или пока не завершится определенное 
количество периодов обучения (определяется эмпирически). Окно данных сдвигает-
ся в прямом направлении на 1 с (время опроса ГНСС) для получения новых данных 
как от ИНС, так и от ГНСС. Очень важно правильно выбрать размер окна, чтобы 
обеспечить желаемую точность одновременно с робастностью системы в режиме 
реального времени. Выбор наилучшего размера окна зависит от типа ИНС и про-
должительности отключений ГНСС. По этой причине в действительности сложно 
подобрать оптимальный размер окна для работы в режиме реального времени.

Для эффективной борьбы с неопределенностью, неточностью и расплывчатостью 
входных данных в динамических средах авторы работы [33] предложили использо-
вать нечеткие системы для создания нечеткого модуля для интеграции ИНС/ГНСС. 
В предлагаемом модуле используется адаптивная сеть на основе системы нечеткого 
вывода ANFIS [16] для оценки погрешностей ИНС INSPδ  с использованием архитек-
туры P–δP. Схематическое представление предлагаемого модуля ANFIS для синтеза 
данных представлено на рис. 3. 

Рис. 3. P–δP архитектура с ANFIS; P1,P2,T1,T2 − нечеткие множества; W1,W2 − веса, которые обозначают 
интенсивность нечеткого правила; П − слой умножения для применения нечеткого оператора T.  

Оператор нормы (минимум или произведение), N − фиксированный узловой слой для вычисления 
нормированных интенсивностей ( )1 2,W W ; f1(*), f2(*) − нелинейные функции

Модель ANFIS делит входные данные на нечеткие подпространства 1 2 1 2, ,( , )P P T T  
и отображает выходные данные с помощью набора линейных функций. При нали-
чии сигнала ГНСС система ANFIS обучается наносить на карту погрешности между 
определением координат по данным ИНС и ГНСС. Нечеткая система использует-
ся для предсказания составляющих координат ИНС при отключении ГНСС. Число  
и форма функций принадлежности были определены предварительно, а их исходный 
разброс и перекрытие – с помощью алгоритма нечеткой кластеризации [34]. Результа-
ты показали, что модуль ANFIS может обеспечить достаточный уровень точности при 
краткосрочных отключениях ГНСС. Вместе с тем эта система показала низкую эф-
фективность при длительных отключениях ГНСС. Характеристики также ухудшались 
при значительной динамике транспортного средства, существенно отличавшейся от 
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той, что наблюдалась в процессе обучения системы.  Некоторые ограничения, связан-
ные с оптимизацией параметров ANFIS (например, количество функций принадлеж-
ности) во время работы системы, создавали огромную вычислительную нагрузку при 
реализации в режиме реального времени.

В работе [35] было предложено оптимизировать архитектуру P–δP на основе 
ANFIS путем реализации временного метода перекрестной проверки на досто-
верность работы с окнами в процессе обновления параметров ANFIS. Этот метод 
предполагал использование неперекрывающегося движущегося окна вместо сколь-
зящего, описанного в [32]. Неперекрывающееся движущееся окно не обладает из-
быточностью информации, характерной для сигналов ИНС при использовании 
скользящего окна, и, таким образом, не требует длительного времени для обработки 
данных по сравнению со скользящим окном. Перекрестная проверка – это метод 
дробления данных, который позволяет итеративно разбивать выборки на два набора 
данных. Первый набор может использоваться в обучении, а второй – для тестирова-
ния модели. Процесс обучения предлагаемой системы на основе ANFIS схематично 
представлен на рис. 4. Результаты вычислений указывают на то, что предложенный 
в [35] модуль ANFIS, в отличие от построенных на ИИ предыдущих модулей об-
работки данных, имеет весьма низкие погрешности определения координат ИНС 
при относительно длительных отключениях ГНСС. Тем не менее точность систе-
мы сильно зависит от размера используемого временного окна. Этот метод показал 
весьма ограниченные результаты применительно к навигационной системе ИНС/
ГНСС на МЭМС из-за высокого уровня шума и нестабильности смещения нуля 
инерциальных датчиков МЭМС. Показано, что при выборе размера окна необходи-
мо учитывать ряд факторов. Большие размеры окон гарантируют, что система ими-
тирует большую динамику движения. Это обеспечивает более высокую точность 
при длительных отключениях ГНСС. Вместе с тем небольшой размер окна может 
гарантировать соответствующее обновление модуля ANFIS.

Рис. 4. Обучение сети ANFIS с использованием перекрестной проверки в архитектуре P–δP  
на основе ANFIS

Основным недостатком архитектуры P–δP является невозможность оценки по-
грешностей определения скорости и ориентации при отключении сигнала ГНСС. 
Помимо этого, трудоемкий процесс обучения ИС затрудняет его применение в ре-
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жиме реального времени. Другая проблема, связанная с архитектурой P–δP, заклю-
чается в том, что по сравнению с ФК погрешности трех координат обрабатываются 
независимо, тогда как эти погрешности имеют взаимную корреляцию, особенно при 
использовании БИНС.

В. Комбинированная архитектура P–δP и V–δV

Комбинированная архитектура P–δP и V–δV предложена в работе [25], где для 
обеспечения оценки погрешности скорости к модулю P–δP, описанному ранее в [35], 
добавлен модуль скорости V–δV. Система содержит два модуля ANFIS: первый об-
рабатывает скорость ИНС, обеспечивая оценку определения ее погрешности, в то 
время как второй обрабатывает координаты ИНС и выдает их погрешности. Эти 
два модуля, соответственно, обновляются с использованием скорости и положения 
ГНСС, как показано на рис. 5. 

Рис. 5. Обновление данных о координатах и скорости на основе ANFIS для интеграции ИНС/ГНСС

Результаты показали, что предложенная архитектура на основе ANFIS (P–δP + V–δV) 
[25] по сравнению с предыдущими модулями обработки данных на основе ИИ имеет 
весьма низкие погрешности определения координат ИНС при относительно длитель-
ных отключениях ГНСС как для навигационных, так и для тактических классов ИНС. 

В работе [36] оптимизирована ANFIS-ориентированная архитектура (р–∆ р + В–∆ в) 
с помощью генетического алгоритма (GA) [19]. Получившийся в результате модуль 
назван GANFIS [36]. Позднее в работе [37] было предложено использовать для оп-
тимизации метод роя частиц (Particle Swarm Optimization, PSO) [38], по аналогии 
полученный модуль назван PANFIS. GANFIS показал несколько более высокую 
точность, чем основанный на алгоритме обратного распространения модуль ANFIS 
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(называемый BANFIS), в отношении погрешностей определения скорости и коорди-
нат. Алгоритм GANFIS также обладает быстрой сходимостью и меньшей вычисли-
тельной сложностью по сравнению с BANFIS [36]. Алгоритм PANFIS обеспечивал 
чуть более высокую точность, чем GANFIS. Кроме того, время, необходимое для 
обучения, которое считается одним из наиболее важных факторов при работе в ре-
жиме реального времени, подтверждает превосходство PANFIS над GANFIS: оно 
значительно меньше [37].

Одним из недостатков комбинированной архитектуры P–δP и V–δV является не-
возможность оценки угловых погрешностей при пропадании сигнала ГНСС. Функ-
ционирование в режиме реального времени также является непростой задачей.

Архитектуры, основанные только на ИИ, имеют некоторые недостатки: они ис-
пользуют разделенную схему для интеграции ИНС и ГНСС без обратной связи, не-
обходимой для обновления модели измерений инерциальных датчиков. Отсутствие 
обратной связи в этих архитектурах может не иметь существенного влияния при 
использовании ИНС высокого класса, поскольку модели измерений инерциальных 
датчиков хорошо описаны. Тем не менее это имеет крайне важное значение в случае 
недорогих МЭМС-ИНС, где эта модель недостаточно хорошо описана и резко меня-
ется со временем.

Интеграция ИНС/ГНСС с использованием ИИ и ФК

Общее свойство архитектур с ИИ, упомянутых ранее (например, PUA, P–δP), за-
ключается в том, что все они предназначены для использования вместо ФК. Факти-
чески замена ФК модулем ИИ хорошо работала для ИНС навигационного класса. 
Тем не менее эти методы показали невысокую эффективность применительно к на-
вигационным системам ИНС/ГНСС на МЭМС из-за высокого уровня шума и неста-
бильности смещения нуля инерциальных датчиков. В результате ФК сохраняется  
в качестве основного инструмента оценки состояния при интеграции ИНС/ГНСС, 
таким образом, логичным шагом стал метод интеграции, который использует как 
ФК, так и модуль ИИ в одной и той же системе, чему было посвящено большое ко-
личество исследований. Полученные архитектуры варьировались в зависимости от 
типа модуля ФК и ИИ и способа их объединения. При этом было обнаружено, что 
лучший способ понять принцип действия этих архитектур – разделить их в соответ-
ствии с функцией модуля ИИ внутри объединенной архитектуры ФК–ИИ. С учетом 
положения модуля ИИ внутри объединенной архитектуры ФК–ИИ их можно разде-
лить на две основные подкатегории: 

1)	 ФК, компенсированный искусственным интеллектом (AI Compensated KF, 
AICKF), где модуль ИИ используется для оценки и компенсации погрешностей 
состояний ФК во время отключений ГНСС;

2)	 ФК, дополненный искусственным интеллектом (AI Aided KF, AIAKF), где мо-
дуль ИИ используется для прогнозирования измерений (разница между выхода-
ми ИНС и ГНСС) для ФК во время отключений ГНСС. 

В данной архитектуре ИНС и ГНСС интегрированы с помощью слабосвязанной 
схемы. Данные о координатах и скорости, полученные от ГНСС, используются для 
выработки оценок координат и скорости ИНС в ФК. Для дальнейшего повышения 
точности навигационного решения оценки погрешностей подаются обратно в урав-
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нения ИНС, что уменьшает погрешности, влияющие на ИИМ. Для удобства воспри-
ятия обратная связь не будет показана на следующих схемах в режиме доступности 
сигнала ГНСС (режим обучения).   

Как уже отмечалось, ФК остается основным компонентом интегрированной си-
стемы ИНС/ГНСС, в то время как модуль ИИ выполняет вспомогательную функ-
цию. Далее дается подробное объяснение каждой подкатегории. 

А. ФК, компенсированный ИИ в интегрированной системе ИНС/ГНСС 

Идея компенсации погрешностей ФК появилась потому, что при отключениях 
ГНСС ФК обеспечивает более высокую точность по сравнению с ИНС только в том 
случае, если модели шума датчиков не являются точными. На самом деле неточные 
оценки состояния ФК возникают по многим причинам, в частности из-за неточно-
го описания шумов системы, погрешности измерений и неопределенности в дина-
мических моделях и неправильной настройки параметров ФК. В настоящее время 
шумы датчиков моделируются методом вариации Аллана [39]. Оценка вариации Ал-
лана может быть оптимистичной по ряду причин, большинство из которых связано  
с тем, что статическая оценка производится в лаборатории, где на работу датчиков не 
влияют изменения температуры, динамика объекта и прогрев при запуске. По этой 
причине оценка вариации Аллана часто является отправной точкой для настройки 
методом последовательных приближений, после которой, тем не менее, используе-
мые параметры часто близки к оптимальным, но не обязательно идеальны. 

В литературе описано много концепций, связанных с использованием модулей 
ИИ для компенсации погрешностей ФК. Архитектуры варьировались в зависимости 
от типа модулей ИИ и конфигураций входов/выходов этих модулей. Первая архитек-
тура, предполагающая применение модуля ИИ для компенсации погрешностей ФК  
в интегрированной системе ИНС/ГНСС, была предложена в работе [40]. Эта архи-
тектура использует два ФК – навигационный и имитационный (рис. 6). Использова-
ние двух параллельных фильтров позволяет обеспечить итоговый результат. Ими-
тационный фильтр при этом не пропускает сигналы ГНСС, тем самым имитируя 
ее сбои. Это позволяет системе обучаться шаг за шагом путем сравнения выходных 
данных о местоположении от двух фильтров, чтобы сформировать расчетные по-
грешности для обучения модуля ИИ. Когда сигнал ГНСС доступен, навигационный 
ФК генерирует эталонное решение, а имитационный ФК – прогнозное решение, по-
скольку работает только в режиме прогнозирования из-за моделируемых отключе-
ний ГНСС. Рассогласование, рассчитываемое путем вычитания эталонного решения 
из прогнозного, затем используется в качестве расчетного значения для обучения 
модуля ИИ (рис. 6, а). Три MLPNN были использованы для расчета трех составляю-
щих местоположения. Входами северной и восточной сетей являются горизонтальные 
ускорения ,b b

X Yf f , скорость изменения курса b
Zω  и время отсутствия сигналов ГНСС 

t. Входы вертикальной сети – это вертикальное ускорение b
Zf , крен и скорость крена 

и тангажа ,  b b
X Yω ω . Сети обучаются с использованием алгоритма обратного распро-

странения. Когда происходит реальное отключение ГНСС, в режиме прогнозирования 
работает только навигационный ФК, а модули ИИ прогнозируют погрешность опре-
деления координат. Чтобы правильно рассчитать координаты, спрогнозированная по-
грешность определения координат вычитается из их прогнозного значения (рис. 6, б).
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Предложенная архитектура позволила в целом повысить точность во время от-
ключений ГНСС на 60 с по сравнению со стандартным ФК, когда используются дан-
ные измерений МЭМС ИИМ и одного приемника ГНСС. Тем не менее результаты 
не продемонстрировали стабильные точность и улучшения по сравнению с ФК во 
время любых сбоев ГНСС [40]. Помимо этого, результаты были получены на отно-
сительно простой траектории с прямыми линиями и поворотами на 90°. Наконец, 
сложность архитектуры сетей MLP ограничивает возможности ее применения в ре-
жиме реального времени. 

В работе [41] предложено использовать ANFIS вместо MLPNN для компенсации 
ошибок ФК. Вместо трех различных модулей используется ANFIS с 10 входами и 3 вы-
ходами, а вместо ГНСС – дифференциальная ГНСС, как в [40]. Входными данными 
сети ANFIS были: время, прошедшее с момента потери сигнала ГНСС, три линей-
ных ускорения, три угловые скорости и три угла ориентации, а выходными – состав-
ляющие погрешности определения координат. Применение двух параллельных ФК 
позволяет ввести имитированные пропуски ГНСС в один фильтр (имитационный 
ФК), чтобы сформировать набор обучающих данных для сети ANFIS. Для обучения 
в режиме реального времени используется скользящее окно с алгоритмом обратного 
распространения. Предложенная система ANFIS–ФК оказалась лучше, чем ФК при 
отключениях сигнала ГНСС на 30 с. Тем не менее эти результаты также получены 
на траектории, состоявшей в основном из прямых участков с поворотами на 90° [41].

Рис. 6. Компенсация погрешностей ФК при отключениях сигнала ГНСС:  
a – режим обучения; b – режим прогнозирования

В [42] предложено использовать архитектуру P–δP на основе ANFIS, описанную 
ранее для моделирования погрешностей ФК. Три модуля ANFIS P–δP применялись  
с целью обеспечения полного навигационного решения для трех составляющих 
местоположения. Модули ANFIS были также оптимизированы путем реализации 
метода перекрестной проверки на основе временного окна во время обновления 
параметров ANFIS. Этот метод предполагал использование неперекрывающегося 
скользящего окна. Компенсация ФК модулями P–δP на базе ANFIS показала луч-
шие результаты по сравнению с ФК при отключениях сигнала ГНСС на 45 с [42]. 
При этом они были получены на действительно сложных траекториях [40–41]. Надо 
отметить, что хотя в данном случае использовались три модуля ANFIS (каждый из 
них имеет два входа и один выход), эта архитектура проще, чем описанная в [40], где 
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применяется один модуль ANFIS с десятью входами и тремя выходами, поэтому она 
более пригодная для использования в режиме реального времени.

В работе [43] предложен новый подход к компенсации погрешностей ФК, в основе 
которого лежит метод наименьших квадратов на основе опорных векторов LS-SVM 
[44] вместо традиционных нейронных сетей (MLPNN, РБФНС, ANFIS ...). Входные  
и выходные параметры LS-SVM выбираются на основе корреляций между динамиче-
скими изменениями и состояниями ФК. Установлено, что существует относительно 
высокая взаимозависимость между погрешностями скорости и ориентации и смеще-
ниями нуля горизонтального акселерометра и составляющими вектора ориентации 
и скорости. При этом речь идет только о наземных транспортных средствах, верти-
кальное перемещение которых можно проигнорировать, поэтому на входе модуля 
LS-SVM использовались изменения северной и восточной составляющих скорости 
( Ä ,ÄN EV V ) и угла курса Äψ , а на выходе – погрешности определения скорости ФК  
( ,N EV Vδ δ ) и ориентации Aδ . Предложенный алгоритм позволил повысить точность 
определения ориентации, скорости и координат по сравнению с ФК при отключе-
ниях ГНСС не только на 30 с, но и на 15 с. Это свидетельствует о том, что рассма-
триваемый алгоритм более эффективен при коротких отключениях. Кроме того, он 
оказался несколько точнее при определении ориентации, чем та же самая архитек-
тура, но с использованием MLPNN вместо LS-SVM. Результаты были основаны на 
данных полевых испытаний ИИМ тактического класса. Характеристики предлагае-
мой архитектуры не проверялись по измерениям ИИМ на МЭМС.

Авторы работы [45] предложили новую модель, в основе которой – следящий 
фильтр Калмана (Strong Tracking Kalman filter, STKF) [46] и вейвлет-нейронная сеть 
(Wavelet Neural Network, WNN) [47]. Алгоритм STKF, предложенный ранее в работе 
[46], может быть использован для решения задачи оценки состояния нелинейных 
систем с белым шумом. По сравнению с обычным ФК он отличается следующими 
преимуществами: 

1)	 хорошей устойчивостью к изменениям фактических параметров системы; 
2)	 более низкой чувствительностью к шумам системы и измерений, а также к ис-

ходным данным о статистических свойствах системы [46]. 
Предложенную модель можно обозначить как δP(P)–δP(C), где δP(P) –погрешно-

сти ранее оцененного положения, а δP(C) – погрешности текущего положения STKF  
(рис. 7, а). Функция WNN моделирует оцениваемые погрешности в виде временных 
рядов. WNN имеет ту же структуру, что и традиционные ANN. Она состоит из входно-
го слоя, скрытого слоя (вейвлет-слоя) и линейного выходного слоя. Скрытый слой со-
держит нейроны с функциями вейвлет-активации. По сравнению с традиционной ANN 
WNN демонстрирует более высокие точность прогнозирования, скорость сходимости  
и отказоустойчивость для сложных нелинейных и неопределенных систем [45].

Модель STKF/WNN с 10-шаговой WNN обладает преимуществами по сравнению 
с ФК/РБФНС и STKF/РБФНС при той же самой конфигурации входных/выходных 
параметров. Как показали результаты экспериментов, точность позиционирования 
значительно улучшалась при отключениях ГНСС даже на 60 с [45]. Сравнение конфи-
гурации δP(P)–δP(C) с обычной конфигурацией P–δP для той же модели STKF/WNN 
продемонстрировало ее большую эффективность при отключениях ГНСС на 40 с 
(хотя отключений было только два). 
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Рис. 7. Гибридная система WNN/STKF: a – режим обучения; b – режим прогнозирования

В работе [48] описывается недорогая распределенная слабосвязанная интегриро-
ванная ИНС/ГНСС на основе гибридного экстраполятора, объединяющая РБФНС 
и ФК (рис. 8). Когда сигналы ГНСС доступны, система обработки данных распре-
деленного ФК работает нормально и обучаются 6 сетей РБФНС (с одним входом  
и одним выходом). Входные данные – три составляющие местоположения и скоро-
сти ИНС, соответственно, выходные данные – 6 сетей РБФ, представляющие собой 
обновленные составляющие от двух ФК (рис. 8, а). Когда сигналы ГНСС недоступ-
ны, 6 РБФНС функционируют в качестве экстраполяторов и вырабатывают прогно-
зные значения составляющих ориентации и скорости от ФК (рис.8, б). Было прове-
дено сравнение предложенной распределенной системы с двумя другими, в которых 
используются только модули ИИ (без ФК), а именно предиктор на базе РБФНС  
и линейная сеть с временной задержкой (time delay linear network TDLN), или просто 
предиктор на базе TDLN. Предложенная система была протестирована с использо-
ванием МЭМС ИИМ и показала лучшие результаты, чем две другие системы [48].

Рис. 8. Распределенная интегрированная навигационная система ИНС/ГНСС на гибридном предикторе: 
а – обучение; b – прогнозирование
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Б. ФК, дополненный ИИ в интегрированной системе ИНС/ГНСС

Здесь интеграция ИНС и ГНСС осуществляется с помощью ФК, а также модуля 
ИИ, который используется, когда пропадает сигнал ГНСС. Основное различие меж-
ду AIAKF и AICKF заключается в том, что в первом случае при отсутствии сигнала 
ГНСС фильтр Калмана продолжает работать как в режиме коррекции измерений, 
так и в режиме прогнозирования, а во втором – только в режиме прогнозирования.

В работе [49] предложена модель, в которой модуль ИИ дополняет ФК и исполь-
зуется для прогноза погрешности измерений в ФК при отключениях ГНСС. Пред-
лагаемая система функционирует в двух режимах: режиме обучения, пока сигнал 
ГНСС доступен, и режиме прогнозирования, когда сигнал ГНСС отсутствует. На 
этапе обучения ФК вырабатывает навигационные решения и обновляет переменные 
состояния фильтров с помощью измерений ГНСС. В то же время измерение ФК 

/GNSS INSPδ  (погрешность позиционирования с учетом измерений ГНСС) отбирается 
как эталонный параметр для нейронной сети. В процессе обучения непрерывно со-
поставляются выходные параметры нейронной сети с эталонными с одновременной 
корректировкой параметров в нейронной сети каждый раз, как обновляются изме-
рения в ФК (см. рис. 9, а). При отключениях ГНСС выходной параметр нейрон-
ной сети /ĜNSS INSPδ  (прогнозируемая погрешность позиционирования) используется  
в качестве измерения в ФК, чтобы сохранить его рабочее состояние таким же, как 
если бы сигнал ГНСС был доступен. Чтобы продемонстрировать полностью дина-
мику движения транспортного средства, в качестве входных параметров нейронной 
сети выбираются углы ориентации, изменения скорости транспортного средства  
и углов ориентации ∆A в каждый период дискретизации (см. рис. 9, б). 

Рис. 9. Структура гибридной системы, использующей ФК, дополненной РБФНС:  
a – режим обучения; b – режим прогнозирования

Три отдельных РБФНС применяются для прогнозирования погрешностей пози-
ционирования в трех ортогональных направлениях. Обучение РБФНС осуществля-
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лось с помощью алгоритмов обратного распространения и сопряженного градиента, 
что предполагает использование технологии неперекрывающегося окна размерно-
стью 60 с. Предложенная система показала лучшие результаты в сравнении с ФК 
при определении местоположения, скорости и ориентации во время отключений 
ГНСС на 60 с. В ходе натурных испытаний были задействованы ИИМ тактического 
класса и дифференциальная ГНСС [49]. Тем не менее при отключениях ГНСС в ФК 
были спрогнозированы только позиционные измерения, из чего следует, что ФК не 
полностью работоспособен, поскольку скоростные измерения не прогнозируются.

В работе [50] предложен гибридный метод прогнозирования, который позволяет 
устранить последствия отключений ГНСС за счет использования РБФНС и анализа 
временных рядов. Этот метод применялся в качестве дополняющего ФК, поскольку 
с его помощью прогнозировались ГНСС-коррекции. Структура системы гибридного 
экстраполятора при наличии сигнала ГНСС показана на рис. 10, а.

Рис. 10. Структура системы гибридного экстраполятора:  
а – при наличии сигналов ГНСС; b – при отключениях ГНСС

При наличии спутниковых сигналов ГНСС-измерения обеспечиваются путем вы-
читания данных о местоположении и скорости от ИНС и ГНСС. Таким образом, ги-
бридная система прогнозирования работает в режиме обновления данных. В процессе 
обучения РБФНС полученная разность / /( , )GNSS INS GNSS INSP Vδ δ  рассматривается как эта-
лонный параметр для нейронной сети, а выходные данные гироскопов и акселероме-
тров ( ),b bf ω  – как входные. Пока сигналы ГНСС доступны, структура и параметры 
РБФНС непрерывно обновляются за счет эталонных параметров. Более того, прогноз 
по модели РБФНС / /( ,ˆ ˆ )RBF RBF

GNSS INS GNSS INSP Vδ δ , вычитаемый из разности эталонных данных 
/ /( , )GNSS INS GNSS INSP Vδ δ , дает остаточную погрешность, которая в то же время модели-

руется на основе теории временных рядов. При возникновении сбоев ГНСС гибрид-
ная система прогнозирования переключается в режим прогнозирования. Как показано 
на рис. 10, b, РБФНС использует результаты измерений гироскопов и акселерометров 
в качестве входных данных для получения прогноза / /( ,ˆ ˆ )RBF RBF

GNSS INS GNSS INSP Vδ δ . Меж-
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ду тем прогноз / /( ,ˆ ˆ )TS TS
GNSS INS GNSS INSP Vδ δ  формируется с помощью модели временно-

го ряда. На основании этих двух результатов вырабатывается оптимальный прогноз 
/ /( ,ˆ ˆ )GNSS INS GNSS INSP Vδ δ , который используется для обновления результатов измерений  

в ФК при отключениях ГНСС. Предлагаемый метод продемонстрировал лучшие ре-
зультаты по сравнению с методами на основе только ФК и РБФНС для всех периодов 
отсутствия сигналов ГНСС (от 50 до 600 с), однако они были получены в ходе экспери-
ментов, где были задействованы лишь ИИМ навигационного класса. Никакой информа-
ции об экспериментах, проведенных с использованием устройств более низкого класса 
(например, МЭМС), предоставлено не было. Кроме того, сложность предлагаемой си-
стемы не позволяет применять ее в режиме реального времени. 

В работе [51] предложен гибридный метод прогнозирования, который сочетает 
алгоритм экстремального обучения (extreme learning machine, ELM) [52] и ФК. ELM 
применяется для прогнозирования наблюдений ФК во время отключений ГНСС  
и представляет собой быстрый алгоритм обучения, предназначенный для однослой-
ных нейронных сетей с прямой связью. По сравнению с РБФНС для ELM не нужно 
настраивать входные веса и скрытые смещения, что позволяет значительно сократить 
время. Это важно для решения прикладных задач в режиме реального времени. Как 
показали исследования, в некоторых случаях ELM не только значительно ускоряет 
процесс обучения, но и повышает общую производительность [52]. Гибридная систе-
ма прогнозирования показана на рис. 11.

Рис. 11. Гибридная система прогнозирования ELM/ФК: 
a – режим обучения; b – режим прогнозирования

Когда сигналы ГНСС поступают непрерывно, ELM функционирует в режиме обу-
чения. Измерения гироскопа и акселерометра выбираются в качестве входных сигна-
лов ELM, а вектор наблюдения ФК / /( , )GNSS INS GNSS INSP Vδ δ  рассматривается в качестве 
эталонных параметров на входе нейронной сети, как показано на рис. 11, а. Исполь-
зуются два модуля ELM, активируемых в зависимости от амплитуды измеренно-
го ускорения. При возникновении отключений ГНСС ELM-сети переключаются  
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в режим прогнозирования (см. рис. 11, б). Данные измерений гироскопов и акселе-
рометров передаются в ELM для формирования прогноза вектора наблюдения ФК 

/ /( ,ˆ ˆ )GNSS INS GNSS INSP Vδ δ , который используется для обновления результатов измерений 
в ФК. Полученные результаты показывают, что предложенный алгоритм позволяет 
повысить точность по сравнению со схемами на основе только RBF и только ФК при 
двух отключениях ГНСС (на 50 и 100 с) в случае недорогой интегрированной нави-
гационной системы БИНС/ГНСС [51].

В [53] предложен гибридный алгоритм обработки данных, позволяющий полу-
чить псевдоинформацию о местоположении, чтобы поддержать интегрированную 
навигационную систему при отключениях ГНСС. Предлагаемая модель на основе 
MLPNN соотносит данные о скорости, угловой скорости и кажущемся ускорении 
ИНС с приращениями координат по данным ГНСС (рис. 12). Модель обозначена 
как OINS – ∆PGNSS. При наличии данных от ГНСС модуль MLPNN находится в режиме 
обучения (рис. 12, а). Данные на текущем и предыдущем шаге о кажущемся ускоре-
нии, угловых скоростях и скорости передаются в модуль MLPNN в качестве входных 
данных, в то время как приращения координат по данным ГНСС задаются в качестве 
ожидаемого выхода. Приращение координат по данным ГНСС может быть накопле-
но для получения псевдокоординат ГНСС, которые затем используются в качестве 
входных данных в ФК для формирования вектора наблюдения с учетом данных  
о координатах, вырабатываемых ИНС. Гибридная система будет непрерывно предо-
ставлять информацию, как это происходит и при наличии ГНСС (рис. 12, б). Модель  
OINS – ∆PGNSS продемонстрировала лучшие результаты, чем модель, описанная в [31, 
41, 42], при одном отключении ГНСС на 300 с. В ходе эксперимента использовался 
ИИМ тактического класса, информации об эффективности предложенной архитек-
туры с использованием ИИМ на МЭМС нет.

Рис. 12. Гибридный алгоритм обработки для интегрированной системы ГНСС/ИНС:  
a – режим обучения; b – режим прогнозирования

В [54] предложен способ обработки данных, дополнительно использующий ро-
бастный метод наименьших квадратов на основе опорных векторов (robust least 
squares support vector machine, RLS–SVM) для прогнозирования псевдокоординат 
ГНСС во время ее отключений. Эта система аналогична OINS – ∆PGNSS в части функ-
ции модуля ИИ, но вместо MLPNN используется RLS–SVM, входными данными 
которого являются значения кажущегося ускорения, скорости и рыскания вместо те-
кущих и предыдущих значений кажущегося ускорении, угловых скоростей и скоро-
сти в OINS – ∆PGNSS. Предложенный алгоритм способен более точно спрогнозировать 
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приращения координат, чем описанный выше метод на основе LS–SVM [43]. При 
этом результаты получены только для ИИМ тактического класса и при отключении 
ГНСС на 300 с.

Общим недостатком всех архитектур категории AICKF является то, что они ис-
пользуют одни и те же данные (ковариационные матрицы) ФК как при наличии, 
так и при отсутствии сигнала ГНСС. Это ошибочный подход, поскольку измерения, 
вырабатываемые модулями ИИ, имеют характеристики, отличающиеся от характе-
ристик измерений ГНСС. Один из вариантов решения этой проблемы – привязать 
ковариационные матрицы к погрешностям обучения и прогнозирования модуля ИИ.

Сравнение различных архитектур

В табл. 2 приведены преимущества и недостатки всех схем, описанных в данной 
статье. В последних двух столбцах приведены сведения о способности данной архи-
тектуры функционировать в режиме реального времени и обеспечить более высокую 
точность по сравнению с другими схемами или/и ФК. Способность работать в режи-
ме реального времени может рассматриваться как уровень сложности модуля в ча-
сти конфигураций входных/выходных данных, количества слоев и нейронов (случай 
ANN) и алгоритмов обучения (действующих автономно, в режиме реального време-
ни, скользящего окна и т.д.). Индекс, отражающий повышение точности, берется из 
литературы. В действительности трудно оценить общую производительность пред-
лагаемых архитектур, поскольку все они тестировались различными способами. 

Т а б л и ц а  2 

Сравнение различных архитектур на основе искусственного интеллекта в системе ИНС/ГНСС;   
 – да;  – нет

Архитектура

Общая 
категория

Выходные 
данные
при откл. ГНСС

Класс ИНС 
Способность 
работы в 
режиме 
реального 
времени

Повышение 
точности

То
ль

ко
 И

И

A
IC

K
F

A
IA

K
F

Ко
ор

ди
на

ты

С
ко

ро
ст

ь

О
ри

ен
та

ци
я

Н
ав

иг
ац

ио
н.

Та
кт

ич
ес

ки
е

М
Э

М
С

PUA_MLP           

PUA_CNN           

PUA_RFR           

P–δP (MLPNN)           

P–δP (РБФНС)           

P–δP (ANFIS)           

P–δP+V–δV 
(ANFIS)           

P–δP+V–δV 
(GANFIS)           
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P–δP+V–δV 
(PANFIS)           

MLPNN+ОФК           

ANFIS+ОФК 
использующий 
P–δP

          

LS–SVM+ОФК           

WNN+STKF           

RBFNN+ОФК           

RBFNN+ОФК           

RBFNN+ОФК           

RBFNN+ОФК+ 
временные ряды           

ELM+ОФК           

O–ΔP 
(MLPNN+ОФК)           

RLS–
SVM+ОФК           

В экспериментах были задействованы разные классы ИНС, они также проходили 
при разных количестве отключений ГНСС и продолжительности отсутствия ее сигна-
лов. Тем не менее, как видно из табл. 2, AIAKF обладает рядом преимуществ по срав-
нению с AICKF и методами только на базе ИИ в отношении количества обновлений 
выходных данных ГНСС во время ее отключений. Это важно для многих приложений, 
которые требуют непрерывно поступающей информации о координатах, скорости  
и пространственном положении. Еще одним достоинством AIAKF является способ-
ность вырабатывать информацию о точности при отсутствии сигналов ГНСС благода-
ря расчету ковариационной матрицы в ФК. Алгоритмы двух других категорий (AICKF 
и только ИИ) не предоставляют таких данных. Что касается ИНС, то результаты экспе-
риментов показали, что гибридный метод прогнозирования [50] (РБФНС + ОФК+ вре-
менные ряды) обеспечивает более высокую точность для ИНС навигационного класса, 
а метод [51] (ELM+ОФК) – для ИНС на МЭМС. Для ИНС тактического класса наиболее 
высокую точность обеспечивают алгоритмы ANFIS + ОФК с использованием P–δP [42], 
O–ΔP [53] и RLS–SVM+ОФК [54]. Алгоритмы LS–SVM+ОФК [43] и ELM+ОФК [51] 
обладают наилучшими характеристиками для работы в режиме реального времени.

Выводы

В этом разделе проанализированы некоторые вопросы, касающиеся применения 
методов ИИ в системах ИНС/ГНСС.

A. Выбор входных и выходных данных для модулей ИИ 

Проблема выбора оптимальной конфигурации входных и выходных данных для 
модулей ИИ глубоко не рассматривалась. Фактически большинство авторов предла-
гают собственный вариант конфигурации входных и выходных данных, не обосно-
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вывая свой выбор и не проводя сравнений с другими конфигурациями. В качестве 
исключения можно назвать работы [43, 49], в которых входные и выходные пара-
метры выбираются на основе перекрестных корреляций между ними. Между тем 
этот вопрос следует рассмотреть подробно, поскольку он имеет непосредственное 
отношение к точности системы, а также к способности функционировать в режиме 
реального времени. Чем меньше конфигураций входных и выходных параметров, тем 
проще внутренняя структура, а следовательно, короче период обучения. Наоборот, 
большее число конфигураций означает наличие более сложной структуры и, соот-
ветственно, более длительного периода обучения, что затрудняет использование си-
стемы в режиме реального времени.

Б. Фильтр Калмана 

Как известно, ФК обладает целым рядом достоинств, таких как простота реали-
зации и способность функционировать в режиме реального времени. По этой при-
чине он используется в качестве основного компонента в интегрированных систе-
мах ИНС/ГНСС. При этом в исследованиях, описывающих применение модулей ФК  
и ИИ, в качестве единственно возможного варианта предлагался обобщенный 
фильтр Калмана. Исключением является работа [45], где в качестве инструмента об-
работки информации предлагается STKF. Другие варианты, например ансцентный 
ФК, обладающий меньшей чувствительностью к нелинейностям моделей процессов 
и наблюдений по сравнению с обобщенным ФК, не рассматриваются. 

В. Модуль искусственного интеллекта

Технология искусственного интеллекта развивается очень быстро, и новые мето-
ды успешно применяются во многих областях. Современная тенденция заключается 
в использовании новых интеллектуальных алгоритмов, таких как ELM, SVM, RFR  
и др., которые способны быстро обучаться и обладают более высокой производи-
тельностью по сравнению с обычными ANN (MLP, RBF, ANFIS и др.).

Г. Алгоритмы обучения

В основе алгоритмов обучения модулей ИИ во всех вышеупомянутых архитек-
турах лежит так называемое пакетное обучение, при котором параметры модуля 
ИИ обновляются после накопления пакета данных (окна). Недостаток этого метода 
заключается в том, что процесс обучения не может начаться, пока не будет нако-
плено определенное количество обучающих выборок, что затрудняет использова-
ние алгоритма в режиме реального времени. Наиболее подходящим для модуля ИИ 
в системах ИНС/ГНСС фактически является интерактивное обучение – наиболее 
распространенный метод машинного обучения, поскольку нет вычислительных воз-
можностей обработать быстро большой массив данных. Этот метод используется 
также в тех случаях, когда возникает необходимость в оперативной адаптации алго-
ритма к новым наборам данных или когда сами данные являются функцией времени. 
В процессе онлайн-обучения модуль ИИ будет функционировать точно так же, как  
и ФК, а его параметры будут постепенно обновляться с каждым новым пакетом. 
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Д. Условия обучения 

Все предлагаемые архитектуры работают в двух режимах – режиме обучения при 
наличии сигнала ГНСС и режиме прогнозирования при его отсутствии. Тем не менее 
в процессе обучения эти методы не учитывают качество измерений ГНСС, которое 
может снижаться в условиях городской среды. Это влияет на результаты обучения 
модуля ИИ по причине неопределенности эталонных данных.

Е. Компенсированный ФК по сравнению с дополненным

В системах ИНС/ГНСС по-прежнему применяются оба ФК – как дополненный, 
так и компенсированный ИИ, хотя нет никаких сведений, какой из них лучше с точ-
ки зрения повышения точности. В будущем необходимо найти ответ именно на этот 
вопрос: это позволит сосредоточить усилия исследователей на одном направлении 
вместо двух и сэкономит много времени.

Заключение

Чтобы решить проблему отсутствия сигнала ГНСС в слабосвязанных системах 
ИНС/ГНСС, применяются различные методы на основе искусственного интеллекта. В 
настоящем обзоре представлено описание ряда архитектур с кратким пояснением для 
каждой. Подробно обсуждаются вопросы, связанные с применением искусственного 
интеллекта в системах ИНС/ГНСС. Приводится сравнение различных архитектур. Да-
ются рекомендации для будущих исследований в области применения технологий на 
основе искусственного интеллекта в интегрированных системах ИНС/ГНСС.  
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Abstract. The limitations of Kalman filter (KF) have motivated researchers to consider alternative 
methods of integrating inertial navigation systems (INS) and global navigation satellite systems 
(GNSS), predominantly based on artificial intelligence (AI). Over the past two decades, a great 
number of research gained in order to validate the possibility of using AI methods in the field 
of integrated navigation systems. Different approaches have been proposed for combining AI 
modules with the other parts of the INS/GNSS system. The article suggests a new classification 
of the resulting schemes based on the functionality of AI modules in the INS/GNSS system. The 
paper also provides a brief explanation of each scheme with its advantages and disadvantages. 
Some aspects that need to be considered in future research in this field are also highlighted.
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neural networks, Kalman filter.
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