Motion Control of Autonomous Wheeled Robots in Precision Agriculture
https://doi.org/10.17285/0869-7035.0083
Abstract
Precision agriculture makes use of high-accuracy navigation, attitude determination, and obstacle detection methods to save resources and to obtain better results. The collected robot position and attitude, and obstacle location data can be effectively employed to synthesize control algorithms for autonomous agricultural machines. These algorithms are applied for coverage path planning, route planning, motion stabilization along the specified paths, obstacle avoidance, and ensuring guaranteed behavior. These tasks are considered in the paper.
About the Authors
T. A. TormagovRussian Federation
Moscow
А. А. Generalov
Russian Federation
Moscow
M. Yu. Shavin
Russian Federation
L. B. Rapoport
Russian Federation
References
1. Leick A., Rapoport L., Tatarnikov, D., GPS Satellite Surveying, Fourth Edition, 2015, 807 p.
2. Gilimyanov, R.F., Pesterev, A.V., Rapoport, L.B., Motion control for a wheeled robot following a curvilinear path, Journal of Computer and Systems Sciences International, 2008, no.6(47), pp. 987–994, doi: 10.1134/S1064230708060129.
3. Jin, J., Tang, L., Coverage path planning on three-dimensional terrain for arable farming, Journal of Field Robotics, 2011, no. 3(28), pp. 424–440, doi: 10.1002/rob.20388.
4. Hameed, I.A., Intelligent coverage path planning for agricultural robots and autonomous machines on three-dimensional terrain, Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, no. 3–4(74), pp. 965–983, doi: 10.1007/s10846-013-9834-6.
5. Oksanen, T., Visala, A., Coverage path planning algorithms for agricultural field machines, Journal of Field Robotics, 2009, no. 8(26), pp. 651–668, doi: 10.1002/rob.20300.
6. Hameed, I.A., La Cour-Harbo, A., Osen, O.L., Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths, Robotics and Autonomous Systems, 2016, no. 76, pp. 36–45, doi: 10.1016/j.robot.2015.11.009.
7. Atkar, P.N., Greenfield, A., Conner, D.C., Choset, H., Rizzi, A.A., Uniform Coverage of Automotive Surface Patches, The International Journal of Robotics Research, 2005, no. 11(24), pp. 883–898, doi: 10.1177/0278364905059058.
8. De Carvalho, R.N., Vidal, H.A., Vieira, P., Ribeiro, M.I., Complete coverage path planning and guidance for cleaning robots, IEEE International Symposium on Industrial Electronics, 1997, no. 2, pp. 677–682.
9. Cabreira, T., Brisolara, L., Ferreira Jr., P.R., Survey on Coverage Path Planning with Unmanned Aerial Vehicles, Drones, 2019, no. 1(3), p. 4, doi: 10.3390/drones3010004.
10. Пестерев A.В., Гилимьянов Р.Ф. Планирование пути для колесного робота // Труды Института системного анализа Российской академии наук. 2006. №25. С. 205–212.
11. Rodrigues, R.T., Aguiar, A.P., Pascoal, A., A coverage planner for AUVs using B-splines, 2018 IEEE/ OES Autonomous Underwater Vehicle Workshop (AUV), 2018, pp. 1–6, doi: 10.1109/AUV.2018.8729760.
12. Gálvez, A., Iglesias, A., Puig-Pey, J., Computing parallel curves on parametric surfaces, Applied Mathematical Modelling, 2014, no. 9–10(38), pp. 2398–2413, doi: 10.1016/j.apm.2013.10.042.
13. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H., Applications of second-order cone programming, Linear Algebra and its Applications, 1998, no. 1–3(284), pp. 193–228, doi: 10.1016/S0024-3795(98)10032-0.
14. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S., Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding, Journal of Optimization Theory and Applications, 2016, no. 3(169), pp. 1042–1068, doi: 10.1007/s10957-016-0892-3.
15. Domahidi, A., Chu, E., Boyd, S., ECOS: An SOCP solver for embedded systems, 2013 European Control Conference, 2013, pp. 3071–3076, doi: 10.23919/ecc.2013.6669541.
16. Dubins, L.E., On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents, American Journal of Mathematics, 1957, no. 3(79), doi: 10.2307/2372560.
17. Souères, P., Boissonnat, J.-D., Optimal trajectories for nonholonomic mobile robots, Robot Motion Planning and Control Springer-Verlag, 2006, pp. 93–170.
18. Reeds, J.A., Shepp, L.A., Optimal paths for a car that goes both forwards and backwards, Pacific Journal of Mathematics, 1990, no. 2(145), doi: 10.2140/pjm.1990.145.367.
19. Sabelhaus, D., Röben, F., Meyer zu Helligen, L.P., Schulze Lammers P. Using continuous-curvature paths to generate feasible headland turn manoeuvres, Biosystems Engineering, 2013, no. 4(116), pp. 399–409, doi: 10.1016/J.BIOSYSTEMSENG.2013.08.012.
20. Vahdanjoo, M., Zhou, K., Sørensen, C.A.G., Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study, Agronomy, 2020, no. 10(10), p. 1608, doi: 10.3390/agronomy10101608.
21. Conesa-Muñoz, J., Bengochea-Guevara, J.M., Andujar, D., Ribeiro, A., Route planning for agricultural tasks: A general approach for fleets of autonomous vehicles in site-specific herbicide applications, Computers and Electronics in Agriculture, 2016 no.127, pp. 204–220, doi: 10.1016/j.compag.2016.06.012.
22. Халил Х.К. Нелинейные системы. Москва-Ижевск: Институт компьютерных исследований, 2009. 812 c.
23. Generalov, A., Rapoport, L., Shavin, M., Attraction Domains in the Control Problem of a Wheeled Robot Following a Curvilinear Path over an Uneven Surface, Optimization and Applications, 2021, pp. 176–190.
24. Pesterev, A., Rapoport, L., Morozov, Y., Control of a wheeled robot following a curvilinear path, 6th EUROMECH Nonlinear Dynamics Conference, 2008, pp. 1–7.
25. Rapoport, L.B., Estimation of attraction domains in wheeled robot control, Automation and Remote Control, 2006, no.9(67), pp. 1416–1435, doi: 10.1134/S0005117906090062.
26. Thuilot, B., Cariou, C., Martinet, P., Berducat, M., Automatic guidance of a farm tractor relying on a single CP-DGPS, Autonomous Robots, 2002, no. 1(13), pp. 53–71, doi: 10.1023/A:1015678121948.
27. Rapoport, L., Generalov, A., Lurie Systems Stability Approach for Attraction Domain Estimation in the Wheeled Robot Control Problem, Lecture Notes in Computer Science, 2020 (12422 LNCS), pp. 224–238, doi: 10.1007/978-3-030-62867-3_17.
Review
For citations:
Tormagov T.A., Generalov А.А., Shavin M.Yu., Rapoport L.B. Motion Control of Autonomous Wheeled Robots in Precision Agriculture. Gyroscopy and Navigation. 2022;30(1):39-60. (In Russ.) https://doi.org/10.17285/0869-7035.0083