Preview

Gyroscopy and Navigation

Advanced search

Effects of PLL Architecture on MEMS Gyroscope Performance

https://doi.org/10.17285/0869-7035.0086

Abstract

Phase-Locked Loops (PLL) may be included into modern MEMS gyroscopes to provide excitation of inertial mass oscillations, as well as to form clock signal for digital signal processing in an integrated circuit. This paper considers the impact of PLL architecture on MEMS gyroscope performance and its estimation. It is shown that the proposed Double Sampling Phase-Locked Loop (DSPLL) makes it possible to improve the accuracy of MEMS gyroscopes due to high synchronization rate, as well as higher frequency stability as compared to the widely used Charge Pump Phase-Locked Loop (CP-PLL) and the Sampling Phase-Locked Loop (SPLL).

About the Authors

N. V. Kuznetsov
Saint Petersburg State University; Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Russian Federation

St. Petersburg



Ya. V. Belyaev
Concern CSRI Elektropribor, JSC
Russian Federation
St. Petersburg


A. V. Styazhkina
Concern CSRI Elektropribor, JSC
Russian Federation
St. Petersburg


A. T. Tulaev
Concern CSRI Elektropribor, JSC
Russian Federation
St. Petersburg


M. V. Yuldashev
Saint Petersburg State University
Russian Federation


R. V. Yuldashev
Saint Petersburg State University
Russian Federation


References

1. Пешехонов В.Г. Перспективы развития гироскопии // Гироскопия и навигация. 2020. № 2. С. 3–10. DOI 10.17285/0869-7035.0028.

2. Распопов В.Я. Микромеханические приборы. Учебное пособие. 2-е изд., перераб. и доп. Тульский государственный университет, Московский государственный технологический университет им. К.Э. Циолковского. Тула: Гриф и К, 2004.

3. Тулаев А.Т., Стяжкина А.В., Козлов А.С., Беляев Я.В. Методика проектирования микромеханического датчика на основе комплексной системной модели // Информатика, телекоммуникации и управление. 2021. №2 (14). С. 79–92.

4. Liu, K., Zhang, W., Chen, W., Li, K., Dai, F., Cui, F., Wu, X., Ma, G., Xiao, Q., TOPICAL REVIEW: The development of micro-gyroscope technology, Journal of Micromechanics and Microengineering, 2009, no. 19(11), pp. 1–29.

5. Koenig, S., Rombach, S., Gutmann, W., Jaeckle, A., Weber, C., Ruf, M., Grolle, D., Rende, J., Towards a navigation grade Si-MEMS gyroscope, DGON Inertial Sensors and Systems (ISS), 2019, pp. 1–18.

6. Aaltonen L., Halonen K.A.I.. An analog drive loop for a capacitive MEMS gyroscope, Analog Integrated Circuits and Signal Processing, 2010, no. 63(3), pp. 465–476.

7. Aaltonen L., Saukoski M., Teikari I., Halonen K. Noise analysis of comparator performed sine-tosquare conversion, International Biennial Baltic Electronics Conference, IEEE, 2006, pp. 1–4.

8. Беляев Я.В. Методы снижения порога чувствительности микромеханического гироскопа: дис. ... канд. техн. наук. 05.13.01. СПб., 2010. 129 с.

9. Sharma, A., Zaman, M.F., Amini, B., Ayazi, F., A High-Q In-Plane SOI Tuning Fork Device, Proceedings IEEE Conference on Sensors, October 2004, pp. 467–470.

10. Филимонов А.Б., Филимонов Н.Б. Робастное управление с «глубокой» обратной связью // Сборник трудов XIII Всероссийского совещания по проблемам управления «ВСПУ-2019». Москва, 2019.

11. Мееров М.В. Синтез структур систем автоматического регулирования высокой точности. М.: Наука, 1967.

12. Chen, F., Li, X., Kraft, M., Electromechanical Sigma–Delta Modulators Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review, IEEE Sensors Journal, 2016, vol. 16, no. 17, pp. 6476–6495.

13. Omar, A., Elshennawy, A., Ismail, A., Nagib, M., Elmala, M., Elsayed, A., A New Versatile Hardware Platform for Closed-Loop Gyro Evaluation, Proceedings of the Inertial Sensors and Systems (DGON ISS), 2015.

14. Marx, M., Dorigo, D.D., Nessler, S., Rombach, S., Manoli, Y., A 27 μW 0.06 mm2 background resonance frequency tuning circuit based on noise observation for a 1.71 mW CT-Delta Sigma MEMS gyroscope readout system with 0.9°/h bias instability, IEEE J. Solid-State Circuits, 2018, 53(1), pp. 174–186.

15. Kolumban, G., Frigyik, B., Kennedy, M.P., Design equations and baseband model for double-sampling phase-locked loop. The 6th IEEE International Conference on Electronics, Circuits and Systems, Proc., 1999, vol. 2, pp. 895–898.

16. Кузнецов Н.В., Беляев Я.В., Индейцев Д.А., Лобачев М.Ю., Лукин А.В., Попов И.А., Юлдашев М.В., Юлдашев Р.В. Математическое моделирование систем управления колебаниями и обработкой информации в МЭМС гироскопах // XIV Всероссийская мультиконференция по проблемам управления МКПУ-2021. Материалы XIV мультиконференции: в 4-х тт. Ростов-на-Дону, 2021. Т. 2. С.54–56.

17. Leonov, G.A., Kuznetsov, N.V., Nonlinear Mathematical Models of Phase-Locked Loops. Stability and Oscillations, Cambridge Scientific Publisher, Cambridge, 2014.

18. Kuznetsov, N.V., Matveev, A.S., Yuldashev, M.V., Yuldashev, R.V., Nonlinear Analysis of ChargePump Phase-Locked Loop: The Hold-In and Pull-In Ranges, IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(10), pp. 4049–4061.


Review

For citations:


Kuznetsov N.V., Belyaev Ya.V., Styazhkina A.V., Tulaev A.T., Yuldashev M.V., Yuldashev R.V. Effects of PLL Architecture on MEMS Gyroscope Performance. Gyroscopy and Navigation. 2022;30(1):73-83. (In Russ.) https://doi.org/10.17285/0869-7035.0086

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)