Improved Inertial Navigation with Cold Atom Interferometry
https://doi.org/10.17285/0869-7035.0078
Abstract
This article discusses chances and challenges of using cold atom interferometers in inertial navigation. The error characteristics of the novel sensor are presented, as well as one option for an online estimation of the different readout errors. An extended Kalman filter framework is derived and analysed which uses the readout of the atom interferometer as observation in order to correct several systematic errors of a conventional IMU, allowing for an improved strapdown calculation in an arbitrary target system. The performance gain is discussed analytically based on the steady state variances of the filter, as well as on the example of a simulated scenario for Earth orbit satellites. The correction of the conventional IMU errors is further demonstrated in an experiment under laboratory conditions with a higher class sensor emulating an atom interferometer. While the application of the novel technology as a gyroscope is still limited, as pointed out in the paper, the presented framework yields options for a full six degree of freedom operation of the atom interferometer.
About the Authors
В. TennstedtRussian Federation
N. Weddig
Russian Federation
S. Schoen
Russian Federation
References
1. Titterton, D. and Weston, J., Strapdown Inertial Navigation Technology, Institution of Engineering and Technology, 2004.
2. Noureldin, A., Karamat, T.B., and Georgy, J., Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration, Springer Berlin Heidelberg, 2013.
3. Bidel, Y., Zahzam, N., Blanchard, C., Bonnin, A., Cadoret, M., Bresson, A., Rouxel, D., and Lequentrec- Lalancette, M.F., Absolute marine gravimetry with matter-wave interferometry, Nature Communications, Feb 2018, vol. 9, no. 1.
4. Bidel, Y., Zahzam, N., Bresson, A., Blanchard, C., Cadoret, M., Olesen, A.V., and Forsberg, R., Absolute airborne gravimetry with a cold atom sensor, Jan 2020, Journal of Geodesy, vol. 94, no. 2.
5. Geiger, R.., Ménoret, V., Stern, G., Zahzam, N., Cheinet, P., Battelier, B., Villing, A., Moron, F., Lours, M., Bidel, Y., Bresson, A., Landragin, A., and Bouyer, P., Detecting inertial effects with airborne matter-wave interferometry, Nature Communications, Sep 2011, vol. 2, no. 1.
6. Hu, Z.-K., Sun, B.-L., Duan, X.-C., Zhou, M.-K., Chen, L.-L., Zhan, S., Zhang, Q.-Z., and Luo, J., Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter, Physical Review A, Oct 2013, vol. 88, no. 4, p. 043610.
7. Savoie, D., Altorio, M., Fang, B., Sidorenkov, L.A., Geiger, R., and Landragin, A., Interleaved atom interferometry for high-sensitivity inertial measurements, Science Advances, Dec 2018, vol. 4, no. 12.
8. Freier, C., Hauth, M., Schkolnik, V., Leykauf, B., Schilling, M., Wziontek, H., Scherneck, H.-G., Müller, J., and Peters, A., Mobile quantum gravity sensor with unprecedented stability, Journal of Physics: Conference Series, Jun 2016, vol. 723, p. 012050.
9. Rakholia, A.V., McGuinness, H.J., and Biedermann, G.W., Dual-axis high-data-rate atom interferometer via cold ensemble exchange, Physical Review Applied, Nov 2014, vol. 2, no. 5, p. 054012.
10. Richardson, L.L., Rajagopalan, A., Albers, H., Meiners, C., Nath, D., Schubert, C., Tell, D., Wodey, É, Abend, S., Gersemann, M., Ertmer, W., Rasel, E.M., Schlippert, D., Mehmet, M., Kumanchik, L., Colmenero, L., Spannagel, R., Braxmaier, C., and Guzmán, F., Optomechanical resonator-enhanced atom interferometry, Communications Physics, Nov 2020, vol. 3, no. 1.
11. Cheiney, P., Fouché, L., Templier, S., Napolitano, F., Battelier, B., Bouyer, P., and Barrett, B., Navigation- compatible hybrid quantum accelerometer using a Kalman filter, Physical Review Applied, Sep 2018, vol. 10, p. 034030, https://link.aps.org/doi/10.1103/PhysRevApplied.10.034030.
12. Christophe, B., Boulanger, D., Foulon, B., Huynh, P.A., Lebat, V., Liorzou, F., and Perrot, E., A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions, Acta Astronautica, 2015, vol. 117, pp. 1–7, https://doi.org/10.1016/j.actaastro.2015.06.021.
13. Kasevich, M., Weiss, D.S., Riis, E., Moler, K., Kasapi, S., and Chu, S., Atomic velocity selection using stimulated Raman transitions, Physical Review Letters, May 1991, vol. 66, pp. 2297–2300, https:// link.aps.org/doi/10.1103/PhysRevLett.66.2297.
14. Voronov, A.S. and Rivkin, B.S., Gyroscope on de Broglie waves: Intricate things in simple words, Gyroscopy and Navigation, 2021, vol. 12, no. 3, pp. 195–203.
15. Storey, P. and Cohen-Tannoudji, C., The Feynman path integral approach to atomic interferometry: A tutorial, Journal De Physique II, 1994, vol. 4, pp. 1999–2027.
16. Antoine, C. and Borde, C.J., Quantum theory of atomic clocks and gravito-inertial sensors: An update, Journal of Optics B: Quantum and Semiclassical Optics, Apr 2003, vol. 5, no. 2, pp. S199–S207, https:// doi.org/10.1088/1464-4266/5/2/380.
17. Tennstedt, B. and Schön, S., Integration of atom interferometers and inertial measurement units to improve navigation performance, in 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 31.05.–02.06.2021, St. Petersburg, Russia, Piscataway, NJ: IEEE, 2021, https:// doi.org/10.23919/ICINS43216.2021.9470809.
18. Gauguet, A., Canuel, B., Lévèque, T., Chaibi, W., and Landragin, A., Characterization and limits of a cold-atom Sagnac interferometer, Physical Review A, Dec 2009, vol. 80, p. 063604, https://link.aps. org/doi/10.1103/PhysRevA.80.063604.
19. Gersemann, M., Gebbe, M., Abend, S., Schubert, C., and Rasel, E.M., Differential interferometry using a Bose-Einstein condensate, The European Physical Journal D, Oct 2020, vol. 74, no. 10.
20. Schweppe, F.C., Uncertain Dynamic Systems, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1973.
21. Dasgupta, S., Brown, D.R., and Wang, R., Steady state Kalman filter behavior for unstabilizable systems, in 53rd IEEE Conference on Decision and Control, IEEE, Dec 2014.
22. Durfee, D.S., Shaham, Y.K., and Kasevich, M.A., Long-term stability of an area-reversible atom interferometer Sagnac gyroscope, October 2005, http://arxiv.org/abs/quant-ph/0510215v1.
23. Tackmann, G., Berg, P., Abend, S., Schubert, C., Ertmer, W., and Rasel, E.M., Large area Sagnac atom interferometer with robust phase read out, Comptes Rendus Physique, 2014, vol. 15, no. 10, pp. 884–897, https://www.sciencedirect.com/science/article/pii/S1631070514001388.
24. Dutta, I., Savoie, D., Fang, B., Venon, B., Alzar, C.G., Geiger, R., and Landragin, A., Continuous cold atom inertial sensor with 1 nrad/sec rotation stability, Physical Review Letters, May 2016, vol. 116, no. 18.
25. Weddig, N., Tennstedt, B., and Schön, S., Performance evaluation of a three-dimensional cold atom interferometer based inertial navigation system, in 2021 DGON Inertial Sensors and Systems (ISS), IEEE, 2021, accepted for publication.
Review
For citations:
Tennstedt В., Weddig N., Schoen S. Improved Inertial Navigation with Cold Atom Interferometry. Giroskopiya i Navigatsiya. 2021;29(4):22-45. (In Russ.) https://doi.org/10.17285/0869-7035.0078
