Preview

Giroskopiya i Navigatsiya

Advanced search

High-Precision GNSS-Positioning with a Smartphone Considering Its Antenna Phase Center Displacement

EDN: HGPYBF

Abstract

Active development of mass-produced devices with dual-frequency microcircuits capable of processing the code and phase signals from global navigation satellite systems (GNSS) opens up new opportunities for high-precision positioning in geodesy. However, the use of smartphones for such tasks is limited by the lack of data on the position of their antenna phase centers. This paper presents the results of an experiment during which the location of the mean phase center of the GNSS antenna of Huawei P40 Pro smartphone was determined at a point with known coordinates, using the Precise Point Positioning (PPP) method, and the effect of the information obtained on the positioning error was estimated. The study showed that the antenna’s mean phase center is displaced relative to the geometric center of the device by 2.7 cm towards the left edge of the screen, by 1.3 cm deep into the body (from the screen towards the back panel), and by 5.8 cm down from its upper edge. Based on these data, it is possible to correct the systematic positioning errors.

About the Authors

S. V. Dolin
Siberian State University of Geosystems and Technologies
Russian Federation

Novosibirsk



A. O. Malikov
Siberian State University of Geosystems and Technologies
Russian Federation

Novosibirsk



N. S. Chukhleb
Siberian State University of Geosystems and Technologies
Russian Federation

Novosibirsk



V. S Bessonov
Siberian State University of Geosystems and Technologies
Russian Federation

Novosibirsk



References

1. Li, M., Huang, G., Wang, L., Xie, W., BDS/GPS/Galileo Precise Point Positioning Performance Analysis of Android Smartphones Based on Real-Time Stream Data, Remote Sensing, 2023, vol. 15, no. 12, p. 2983, doi: 10.3390/rs15122983.

2. Liu, Q. et al., NLOS signal detection and correction for smartphone using convolutional neural network and variational mode decomposition in urban environment, GPS Solutions, 2023, vol. 27, no. 1, p. 31, doi: 10.1007/s10291-022-01369-2.

3. Zeng, S., Kuang, C., Yu, W., Evaluation of Real-Time Kinematic Positioning and Deformation Monitoring Using Xiaomi Mi 8 Smartphone, Applied Sciences, 2022, vol. 12, no. 1, p. 435, doi: 10.3390/app12010435.

4. Липатников Л.А. Онлайн-сервис преобразования координат // Геодезия и картография. 2025. №3 (1017). С. 2–12. DOI: 10.22389/0016-7126-2025-1017-3-2-12.

5. Карпик А.П., Мареев А.В., Мамаев Д.С. Свободное программное обеспечение для геодезического мониторинга Moncenter // Вестник СГУГиТ. Сибирский государственный университет геосистем и технологий. 2022. Т. 27. №5. С. 43–54. DOI: 10.33764/2411-1759-2022-27-5-43-54.

6. Netthonglang, C., Thongtan, T., Satirapod, C., GNSS Precise Positioning Determinations Using Smartphones, IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Proceedings, Bangkok, Thailand, 2019, pp. 401–404., doi: 10.1109/APCCAS47518.2019.8953132.

7. Wanninger, L., Heßelbarth, A., GNSS code and carrier phase observations of a Huawei P30 smartphone: quality assessment and centimeter-accurate positioning, GPS Solutions, 2020, vol. 24, no. 2, doi: 10.1007/s10291-020-00978-z.

8. Darugna, F., Wübbena, J.B., Wübbena, G., Schmitz, M., Schön, S., Warneke, A., Impact of robot antenna calibration on dual-frequency smartphone-based high-accuracy positioning: a case study using the Huawei Mate20X, GPS Solutions, 2021, vol. 25, no. 1, doi: 10.1007/s10291-020-01048-0.

9. Долин С.В. Учет дифференциальных кодовых задержек многосистемных ГНСС-измерений при позиционировании в режиме реального времени методом Precise Point Positioning // Гироскопия и навигация. 2022. Т. 30. №4 (119). С. 142–151. DOI: 10.17285/0869-7035.00108.

10. Wang, N., Yuan, Y., Li, Z., Montenbruck, O., Tan, B., Determination of differential code biases with multi-GNSS observations, Journal of Geodesy, 2016, vol. 90, no. 3, pp. 209–228, doi: 10.1007/s00190015-0867-4.

11. Аржанников А.А., Глотов В.Д., Митрикас В.В. Вычисление дифференциальных кодовых задержек и построение карт ионосферы с помощью ГНСС // Труды Института прикладной астрономии РАН. 2022. Вып. 60. С. 3–11. DOI: 10.32876/ApplAstron.60.3-11.

12. Särkkä, S., Nummenmaa, A., Recursive Noise Adaptive Kalman Filtering by Variational Bayesian Approximations, IEEE Transactions on Automatic Control, 2009, vol. 54, no. 3, pp. 596–600, doi: 10.1109/TAC.2008.2008348.

13. Huang, G., Zhang, Q., Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors, GPS Solutions, 2012, vol. 16, no. 4, pp. 531–539, DOI: 10.1007/s10291-012-0254-z.

14. Huang, Y., Zhang, Y., Wu, Z., Li, N., Chambers, J., A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices, IEEE Transactions on Automatic Control, 2018, vol. 63, no. 2, pp. 594–601, doi: 10.1109/TAC.2017.2730480.

15. Zhang, Q., Zhao, L., Zhao, L., Zhou, J., An Improved Robust Adaptive Kalman Filter for GNSS Precise Point Positioning, IEEE Sensors Journal, 2018, vol. 18, no. 10, pp. 4176–4186, doi: 10.1109/JSEN.2018.2820097.

16. Pan, C., Li, Z., Gao, J., Li, F., A variational Bayesian-based robust adaptive fi for precise point positioning using undifferenced and uncombined observations, Advances in Space Research, 2021, vol. 67, no. 6, pp. 1859–1869, doi: 10.1016/j.asr.2020.12.022.

17. Yi, D., Hayden, C., Bisnath, S., Enhancing Smartphone Positioning with Galileo HAS Corrections and an Environmentally-Aware PPP/IMU Approach, IEEE/ION Position, Location and Navigation Symposium (PLANS), 2025, doi: 10.1109/PLANS61210.2025.11028581.


Review

For citations:


Dolin S.V., Malikov A.O., Chukhleb N.S., Bessonov V.S. High-Precision GNSS-Positioning with a Smartphone Considering Its Antenna Phase Center Displacement. Giroskopiya i Navigatsiya. 2025;33(3):30-22. (In Russ.) EDN: HGPYBF

Views: 105


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)