Navigation-Grade Laser-Driven Fiber-Optic Gyroscope
EDN: WUICMV
Abstract
The scale factor stability of a fiber-optic gyroscope (FOG) directly depends on the stability of the central wavelength of its optical source. Although broadband, highly stable light sources used in high-precision FOGs provide excellent wavelength stability, they are typically bulky, which complicates the miniaturization of FOGs and FOG-based systems. This work investigates the use of a semiconductor laser diode with pulse-frequency current modulation in a navigation-grade FOG. It is shown that this approach provides superior central-wavelength stability (better than 1.6 ppm), resulting in a FOG angle random walk and bias instability of 0.002°/?h and 0.009°/h, respectively. Comparable performance can be obtained in FOGs employing broadband, highly stable light sources.
About the Authors
A. S. AleinikRussian Federation
St. Petersburg
S. A. Volkovsky
Russian Federation
St. Petersburg
V. S. Oshlakov
Russian Federation
St. Petersburg
A. B. Mukhtubaev
Russian Federation
St. Petersburg
V. E. Strigalev
Russian Federation
St. Petersburg
References
1. Lefèvre, H., The Fiber-Optic Gyroscope, Artech House, 2014.
2. Егоров Д.А., Ключникова Е.Л., Унтилов А.А., Алейник А.С., Волковский С.А., Кузнецов В.Н., Ошлаков В.С., Погудин Г.К., Лиокумович Л.Б. Источники оптического излучения для волоконно-оптических гироскопов // Гироскопия и навигация. 2024. Т. 32. №. 2. С. 8–34. EDN DMBMAR.
3. Wysocki, P.F., Digonnet, M.J.F., Kim, B.Y., and Shaw, H.J., Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications, Journal of Lightwave Technology, 1994, vol. 12, no. 3, pp. 550–567.
4. Cutler, C. C., Newton, S.A., and Shaw, H. J., Limitation of rotation sensing by scattering, Opt. Lett., 1981, vol. 5, pp. 488–490.
5. Bergh, R.A., Culshaw, B., Cutler, C.C., Lefevre, H.C., and Shaw, H.J., Source statistics and the Kerr effect in fiber-optic gyroscopes, Opt. Lett., 1982, vol. 7, no. 11, p. 563.
6. Aleinik, A., Deineka, I., Smolovik, M., Neforosnyi, S., and Rupasov, A., Compensation of excess RIN in fiber-optic gyro, Gyroscopy and Navigation, 2016, no. 7, pp. 214–222.
7. Guattari, F., Chouvin, S., Moluçon, C., and Lefèvre, H., A simple optical technique to compensate for excess RIN in a fiber-optic gyroscope, DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 2014, pp. 1–14, doi: 10.1109/InertialSensors.2014.7049411.
8. Zalesskaia, I. K. et al., Methods of Stabilization of Central Wavelength of Erbium-Doped Fiber Source for High-Accuracy Fiber Optic Gyroscope, International Conference Laser Optics (ICLO), St. Petersburg, Russia, 2020, pp. 1–1, doi: 10.1109/ICLO48556.2020.9285493.
9. Kikilich, N.E. et al., Stabilization of the mean wavelength of an erbium-doped fiber source as part of high-accuracy FOG with increased spectrum width, Appl. Opt., 2022, 61, 6827–6833.
10. Zhao,Y.-G., et al., High-power and low-noise DFB semiconductor lasers for RF photonic links, IEEE Avionics, Fiber-Optics and Photonics Digest CD, Cocoa Beach, FL, USA, 2012, pp. 66–67, doi: 10.1109/AVFOP.2012.6344081.
11. Lloyd, S.W., Digonnet, M.J.F., and Fan, S., Modeling Coherent Backscattering Errors in Fiber Optic Gyroscopes for Sources of Arbitrary Line Width, Journal of Lightwave Technology, 2013, vol. 31, no. 13, pp. 2070–2078.
12. Wheeler, J.M. and Digonnet, M.J.F., A Low-Drift Laser-Driven FOG Suitable for Trans-Pacific Inertial Navigation, Journal of Lightwave Technology, 2022, vol. 40, no. 22, pp. 7464–7470, doi: 10.1109/JLT.2022.3201189.
13. Chamoun, J. and Digonnet, M.J.F., Aircraft-navigation-grade laser-driven FOG with Gaussian-noise phase modulation, Opt. Lett., 2017, vol. 42, no. 8, pp. 1600–1603.
14. Wheeler, J.M. and Digonnet, M.J.F., A Low-Drift Laser-Driven FOG Suitable for Trans-Pacific Inertial Navigation, Journal of Lightwave Technology, 2022, vol. 40, no. 22, pp. 7464–7470, doi: 10.1109/JLT.2022.3201189.
15. Wheeler, J.M., Chamoun, J.N., and Digonnet, M.J.F., Optimizing Coherence Suppression in a Laser Broadened by Phase Modulation With Noise, Journal of Lightwave Technology, 2021, vol. 39, no. 9, pp. 2994–3001, doi: 10.1109/JLT.2021.3061938.
16. Ошлаков В.С., Алейник А.С., Волковский С.А., Стригалев В.Е., Мухтубаев А.Б. Применение полупроводникового лазерного диода в качестве источника оптического излучения волоконнооптического гироскопа // Оптический журнал. 2025. Т. 92. № 8. С. 21–31. http://doi.org/10.17586/1023-5086-2025-92-08-21-31.
17. Njegovec, M. and Donlagic, D., Rapid and broad wavelength sweeping of standard telecommunication distributed feedback laser diode, Opt. Lett., 2013, vol. 38, no. 11, pp. 1999–2001.
18. Ошлаков В.С., Алейник А.С., Волковский С.А., Смирнов Д.С. Исследование характеристик полупроводникового лазерного диода с распределенной обратной связью в режиме источника и приемника оптического излучения для регистрации отклика волоконных решеток Брэгга // Научно-технический вестник информационных технологий, механики и оптики. 2024. Т. 24, № 5. С. 699–708, doi: 10.17586/2226-1494-2024-24-5-699-708.
19. Егоров Д.А., Ключникова Е.Л. Результаты сравнительных исследований источников оптического излучения для волоконно-оптических гироскопов // Гироскопия и навигация. 2022. Т. 30. №4 (119). С.184–192. DOI: 10.17285/0869-7035.00111.
Review
For citations:
Aleinik A.S., Volkovsky S.A., Oshlakov V.S., Mukhtubaev A.B., Strigalev V.E. Navigation-Grade Laser-Driven Fiber-Optic Gyroscope. Giroskopiya i Navigatsiya. 2025;33(3):103-111. (In Russ.) EDN: WUICMV