Preview

Гироскопия и навигация

Расширенный поиск

Предотвращение возможности возникновения резонансных режимов движения для низковысотных спутников класса CubeSat

https://doi.org/10.17285/0869-7035.0076

Аннотация

Резонансные режимы движения, проявляющиеся в существенном увеличении амплитуды колебаний по пространственному углу атаки, могут привести к невыполнению целевой задачи полета. В связи с этим в статье исследуются резонансные режимы движения аэродинамически стабилизированных наноспутников формата CubeSat при полете на низких круговых орбитах при малой инерционно-массовой асимметрии. В отличие от осесимметричных тел вращения у наноспутников формата CubeSat резонансы могут проявляться не только из-за наличия малой асимметрии, но и по причине форм-фактора прямоугольного параллелепипеда. В работе получены формулы для определения критических значений продольной угловой скорости наноспутника, при которых выполняются условия возникновения резонансных режимов движения, а также предложен подход к предотвращению возможного появления резонансов для наноспутников класса CubeSat.

Об авторах

Е. В. Баринова
Самарский национальный исследовательский университет имени академика С.П. Королёва
Россия

Баринова Елена Витальевна. Кандидат технических наук, доцент межвузовской кафедры космических исследований.



И. В. Белоконов
Самарский национальный исследовательский университет имени академика С.П. Королёва
Россия

Белоконов Игорь Витальевич. Доктор технических наук, профессор, заведующий межвузовской кафедрой космических исследований, действительный член общественного объединения «Академия навигации и управления движением». 



И. А. Тимбай
Самарский национальный исследовательский университет имени академика С.П. Королёва
Россия

Тимбай Иван Александрович. Доктор технических наук, профессор межвузовской кафедры космических исследований, действительный член общественного объединения «Академия навигации и управления движением».



Список литературы

1. He, L., Chen, X., Kumar, K. D., Sheng, T. and Yue, C., A novel three-axis attitude stabilization method using in-plane internal mass-shifting, Aerospace Science and Technology, 2019, vol. 92, pp. 489–500.

2. Chesi, S., Gong, Q., Romano, M., Aerodynamic Three-Axis Attitude Stabilization of a Spacecraft by Center- of-Mass Shifting, Journal of Guidance, Control, and Dynamics, 2017, vol. 40, no. 7, pp. 1613–1626.

3. Belokonov, I. and Timbai, I., The Selection of the Design Parameters of the Aerodynamically Stabilized Nanosatellite of the CubeSat Standard, Procedia Engineering, 2015 vol. 104, pp. 88–96.

4. Belokonov, I.V., Timbai, I.A. and Barinova, E.V., Design Parameters Selection for CubeSat Nanosatellite with a Passive Stabilization System, Gyroscopy and Navigation, 2020, vol. 11, no. 2, pp. 149–161.

5. Samir, A. Rawashdeh and Lumpp, James E., Jr., et al., Aerodynamic Stability for CubeSats at ISS Orbit, JoSS, 2013, vol. 2, no. 1, pp. 85–104.

6. Rawashdeh, S., Jones, D., Erb, D., Karam, A., Lumpp, Jr, J.E., Aerodynamic attitude stabilization for a ram-facing CubeSat. Advances in the Astronautical Sciences, 2009, vol. 133, pp. 583–595.

7. Psiaki, M.L., Nanosatellite attitude stabilization using passive aerodynamics and active magnetic torquing, Journal of Guidance, Control, and Dynamics, 2004, vol. 27, no. 3, pp. 347–355.

8. Belokonov, I.V., Timbai, I.A., and Nikolaev P.N., Analysis and Synthesis of Motion of Aerodynamically Stabilized Nanosatellites of the CubeSat Design, Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 287–300.

9. Zabolotnov, Y.M., The resonance motions of a statically stable Lagrange top at small nutation angles, Journal of Applied Mathematics and Mechanics, 2016, vol. 4, no. 80, pp. 302–310.

10. Zabolotnov, Y.M., Resonant Motions of the Statically Stable Lagrange Spinning Top, Mechanics of Solids, 2019, vol. 54, no. 5, pp. 652–668.

11. Plaksiy, K.Y. and Mikhlin, Y.V., Dynamics of nonlinear dissipative systems in the vicinity of resonance, Journal of Sound and Vibration., 2015, vol. 334, pp. 319–337.

12. Plaksiy, K.Y. and Mikhlin, Y.V., Interaction of free and forced nonlinear normal modes in two-DOF dissipative systems under resonance conditions, International Journal of Non-Linear Mechanics, 2017, vol. 94, pp. 281–291.

13. Pietrzak, P., Ogińska, M., Krasuski, T., Figueiredo, K. and Olejnik, P., Near the resonance behavior of a periodicaly forced partially dissipative three-degrees-of-freedom mechanical system, Latin American Journal of Solids and Structures, 2018, vol. 15, no. 5.

14. García-Pérez, Á., Sanz-Andrés, A., Alonso, G. and Chimeno Manguán, M., Dynamic coupling on the design of space structures, Aerospace Science and Technology, 2019, vol. 84, pp. 1035–1048.

15. Fakoor, M., Mohammad Zadeh, P. and Momeni Eskandari, H., Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints, Aerospace Science and Technology, 2017, vol. 71, pp. 172–188.

16. Liaño, G., Castillo, J. L. and García-Ybarra, P. L., Nonlinear model of the free-flight motion of finned bodies, Aerospace Science and Technology, 2014, vol. 39, pp. 315–324.

17. Xu, Y., Yue, B., Yang, Z., Zhao, L. and Yang, S., Study on the chaotic dynamics in yaw–pitch–roll coupling of asymmetric rolling projectiles with nonlinear aerodynamics, Nonlinear Dynamics, 2019, vol. 97, no. 4, pp. 2739–2756.

18. Bardin, B.S. and Chekina, E.A., On the stability of resonant rotation of a symmetric satellite in an elliptical orbit, Regular and Chaotic Dynamics, 2016, vol. 21, no. 4, pp. 377–389.

19. Bardin, B.S. and Chekina, E.A., On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance, Regular and Chaotic Dynamics, 2019, vol. 24, no. 2, pp. 127–144.

20. Cheng, Y., Gómez, G., Masdemont, J.J. and Yuan, J., Analysis of the relative dynamics of a charged spacecraft moving under the influence of a magnetic field, Communications in Nonlinear Science and Numerical Simulation, 2018, vol. 62, pp. 307–338.

21. Aleksandrov, A.Y. and Tikhonov, A.A., Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite, Aerospace Science and Technology, 2020, vol. 104.

22. Aslanov, V.S., Boiko V. V., Nonlinear resonant motion of an asymmetrical spacecraft in the atmosphere, Cosmic Research, 1985, vol. 23, no. 3, pp. 341–347.

23. Ярошевский В.А. Движение неуправляемого тела в атмосфере. М.: Машиностроение, 1978.

24. Zabolotnov, Y.M. and Lyubimov, V.V., Application of the method of integral manifolds for construction of resonant curves for the problem of spacecraft entry into the atmosphere, Cosmic Research, 2003, vol. 41, no. 5, pp. 453–459.

25. Kurkina, E.V. and Lyubimov, V.V., Estimation of the Probability of Capture into Resonance and Parametric Analysis in the Descent of an Asymmetric Spacecraft in an Atmosphere, Journal of Applied and Industrial Mathematics., 2018, vol. 12, no. 3, pp. 492–500.

26. Lyubimov, V.V. and Lashin, V.S., External stability of a resonance during the descent of a spacecraft with a small variable asymmetry in the martian atmosphere, Advances in Space Research, 2017, vol. 59, no. 6, pp. 1607–1613.

27. Zabolotnov, M.Y., A study of oscillations near a resonance during the descent of a spacecraft in the atmosphere, Cosmic Research, 2003, vol. 41, no. 2, pp. 171–177.

28. Barinova, E.V., Belokonov, I. V. and Timbai, I.A., Study of Resonant Modes of Cubesat Nanosatellite Motion under the Influence of the Aerodynamic Moment, 27th Saint Petersburg International Conference on Integrated Navigation Systems, 2020, pp. 1–4.

29. Barinova, E.V., Belokonov, I. V. and Timbai, I.A., Study of Resonant Modes of Motion of a Cubesat Nanosatellite with Small Inertia-Mass Asymmetry under the Aerodynamic Moment, 28th Saint Petersburg International Conference on Integrated Navigation Systems, 2021, pp. 1–4.

30. Белецкий В.В. Движение искусственного спутника относительно центра масс. М.: Наука, 1965.

31. Kirillin, A., Belokonov, I., Timbai, I., Kramlikh, A., Melnik, M., Ustiugov, E., Egorov, A., and Shafran, S., SSAU nanosatellite project for the navigation and control technologies demonstration, Procedia Engineering, 2015, vol. 104, pp. 97–106.

32. Асланов В.С. Пространственное движение тела при спуске в атмосфере. Физматлит, 2004.

33. Platus, D.H., Dispersion of spinning missiles due to lift nonaveraging, AIAA J., 1977, vol. 15, no. 7, pp. 909–915

34. Волосов В.М., Моргунов Б.И. Метод осреднения в теории нелинейных колебательных систем. М: МГУ, 1971.

35. Aslanov, V. S., Determination of the amplitude of three-dimensional oscillations of a ballistic vehicle with a small asymmetry during atmospheric entry, Cosmic Research, 1980, vol. 18, no. 2, pp. 141–146.

36. Боголюбов Ю. А., Митропольский Н.Н. Асимптотические методы в теории нелинейных колебаний. М: Наука, 1974.

37. Belokonov, I.V., Kramlikh, A.V., and Timbai, I.A., Low-orbital transformable nanosatellite: Research of the dynamics and possibilities of navigational and communication problems solving for passive aerodynamic stabilization, Advances in the Astronautical Sciences, 2015, vol. 153, pp. 383–397.

38. Белоконов И.В., Баринова Е.В., Ключник В.Н., Ивлиев А.В., Болтов Е.А. Технология и способ экспериментального определения масс-центровочных и инерционных характеристик наноспутников формата CUBESAT // Космическая техника и технологии. 2021. № 3 (34). С. 83–95.

39. Belokonov, I.V., Timbai, I.A., Nikolaev, P.N., Approach to estimation of nanosatellite’s motion concerning mass centre by trajectory measurements, 12th IAA Symposium on Small Satellites for Earth Observation. Berlin, Germany, 6–10 May 2019, https://iaaspace.org/wp-content/uploads/iaa/Scientific%20 Activity/conf/sseo2021/berlin2019proceedings.pdf.

40. Belokonov, I.V., Timbai, I.A., Nikolaev, P.N., Reconstruction of motion relative to the center of mass of a low-altitude nanosatellite from trajectory measurements, Proceedings of 72nd International Astronautical Congress, Dubai, IAC-21, 25–29 October 2021, B4,3,8,x66209, p. 7.


Рецензия

Для цитирования:


Баринова Е.В., Белоконов И.В., Тимбай И.А. Предотвращение возможности возникновения резонансных режимов движения для низковысотных спутников класса CubeSat. Гироскопия и навигация. 2021;29(4):115-133. https://doi.org/10.17285/0869-7035.0076

For citation:


Barinova E.V., Belokonov I.V., Timbai I.A. Preventing Resonant Motion Modes for Low-Altitude CubeSat Nanosatellites. Giroskopiya i Navigatsiya. 2021;29(4):115-133. (In Russ.) https://doi.org/10.17285/0869-7035.0076

Просмотров: 2


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)