Preview

Giroskopiya i Navigatsiya

Advanced search

Circumlunar Spacecraft Navigation Using the Measurements from Global Navigation Satellite Systems GLONASS, GPS, Galileo and BeiDou

https://doi.org/10.17285/0869-7035.0005

Abstract

The study makes an approach to the problem of circumlunar spacecraft navigation using the measurements from the global navigation satellite systems (GNSS) GLONASS, GPS, Galileo and BeiDou. Algorithms have been developed for determining the orbits of low- and high-orbit circumlunar spacecraft, based on the method of dynamic filtering of pseudo-range measurements from "reverse" navigation satellites (NS). The solution to the navigation problem has been simulated by the measurements from four GNSS, and by those from the NS of GLONASS and GPS only. Accuracy and dynamic characteristics of the obtained solutions have been determined and compared to similar solutions for geostationary spacecraft.

About the Authors

E. A. Mikrin
S.P. Korolev Rocket and Space Public Corporation Energia (RSC Energia), Korolev, Moscow Region, Russia
Russian Federation


M. V. Mikhailov
S.P. Korolev Rocket and Space Public Corporation Energia (RSC Energia), Korolev, Moscow Region, Russia
Russian Federation


I. V. Orlovskii
S.P. Korolev Rocket and Space Public Corporation Energia (RSC Energia), Korolev, Moscow Region, Russia
Russian Federation


S. N Rozhkov
S.P. Korolev Rocket and Space Public Corporation Energia (RSC Energia), Korolev, Moscow Region, Russia
Russian Federation


A. S. Semenov
S.P. Korolev Rocket and Space Public Corporation Energia (RSC Energia), Korolev, Moscow Region, Russia
Russian Federation


I. A. Krasnopol’skii
S.P. Korolev Rocket and Space Public Corporation Energia (RSC Energia), Korolev, Moscow Region, Russia
Russian Federation


References

1. Mikrin, E.A. and Mikhailov, M.V., Navigatsiya kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh sistem (Spacecraft Navigation Using Measurements from Global Navigation Satellite Systems), Moscow: MGTU im. N.E. Baumana, 2017.

2. Mikrin, E.A. and Mikhailov, M.V., Orientatsiya, vyvedenie, sblizhenie i spusk kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykh navigatsionnykh sistem (Orientation, Ascent, Rendezvous and Descent of Spacecraft Based on Measurements from Global Navigation Satellite Systems), Moscow: MGTU im. N.E. Baumana, 2017.

3. Mikhailov, N.V., Avtonomnaya navigatsiya kosmicheskikh apparatov pri pomoshchi sputnikovykh radionavigatsionnykh sistem (Autonomous Navigation of Spacecraft Using Satellite Radio Navigation Systems), St. Petersburg: Politekhnika, 2014.

4. Gordienko, E.S., Ivashkin, V.V. and Simonov, A.V., Analyzing stability of orbits of artificial satellites of the Moon and choosing the configuration of the lunar navigation satellite system, Solar System Research, 2017, vol. 51, no. 7, p. 654. DOI: 10.1134/S0038094617070061.

5. Chebotarev, V.E., Kudymov, V.I., Zvonar’, V.D., Vnukov, A.A. and Vladimirov, A.V., The concept of circumlunar navigation, Issledovaniya naukograda, 2014, vol. 10, no. 4, pp. 14–20.

6. Mikrin, E.A., Orlovskii, I.V., Mikhailov, M.V., Rozhkov, S.N. and Krasnopol’skii, I.A., Satellite navigation of spacecraft in lunar orbit, Kosmicheskaya tekhnika i tekhnologii, 2018, vol. 21, no. 2, pp. 63–70.

7. Winkler, S., Ramsey, G., Frey, C., Chapel, J., Chu, D., Freesland, D., Krimchansky, A. and Concha, M., GPS receiver on-orbit performance for the GOES-R spacecraft, Proc. 10th International ESA Conference on Guidance, Navigation & Control Systems, Salzburg, Austria, 2017.

8. Nazarov, A.E. and Evgrafov, A.E., Using an autonomous navigation system on geostationary spacecraft Electro-L, Multifunctional Space Navigator Platform. On the occasion of the 80th anniversary of Lavochkin Research and Production Association and the 60th anniversary of the space era, Khimki, Moscow, 2017, pp. 313–331.

9. Marareskul, D.I., The method of increase of availability of high orbit spacecraft navigation support by GLONASS, Bulletin of Academician M.F. Reshetnev Siberian Aerospace University, 2013, vol. 52, no. 6, pp. 82–88.

10. Bartenev, V.A., Grechkoseev, A.K. and Marareskul, D.I., GLONASS and GPS application for navigation of geostationary and high-elliptical spacecraft: Navigation methods, equipment configuration and test techniques, Kosmonavtika i raketostroenie, 2007, vol. 48, no. 3, pp. 23–30.

11. Саporali, А. and Nicolini, L., Comparison between broadcast and precise orbits: GPS, GLONASS, Galileo and BeiDou, EUREF Analysis Centres Workshop, Brussels, Belgium, 2017.

12. Circi, Ch., Romagnoli, D. and Fumenti, F., Halo orbit dynamics and properties for a lunar global positioning system design, Monthly Notices of the Royal Astronomical Society, 2014, vol. 442, pp. 3511–3527. DOI: 10.1093/mnras/stu1085.

13. Mikrin, E.A., Mikhailov, M.V., Orlovskii, I.V., Rozhkov, S.N. and Krasnopol’skii, I.A., Satellite navigation of lunar orbiting spacecraft and objects on the lunar surface, Gyroscopy and Navigation, 2019, vol. 10, no. 2, pp. 54–61.

14. Yang, Y., Gao, W., Guo, S., Mao, Y., Yang, Y., Introduction to BeiDou‐3 navigation satellite system, Navigation, 2019, vol. 66, pp. 7–18.

15. Jing, S., Zhan, X., Lu, J., Feng, S., Ochieng, W., Characterisation of GNSS space service volume, Journal of Navigation, 2015, vol. 68, no. 1, pp. 107–125.


Review

For citations:


Mikrin E.A., Mikhailov M.V., Orlovskii I.V., Rozhkov S.N., Semenov A.S., Krasnopol’skii I.A. Circumlunar Spacecraft Navigation Using the Measurements from Global Navigation Satellite Systems GLONASS, GPS, Galileo and BeiDou. Giroskopiya i Navigatsiya. 2019;27(3):3-17. (In Russ.) https://doi.org/10.17285/0869-7035.0005

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)