GLONASS-Aided High-Precision Navigation of Space Geodetic Systems
https://doi.org/10.17285/0869-7035.0006
Abstract
The paper considers the methods of high-precision navigation of space geodetic systems. A technology of determining the orbit parameters by kinematic and dynamic methods using GLONASS signals is proposed. It is for the first time that experimental estimates of position errors have been obtained in a study case of Geo-IK-2 spacecraft, with the measurement residuals of the global quantum-optical network being at the level of 0.06 m (RMS).
About the Authors
A. N. ZaliznyukRussian Federation
S. N. Karutin
Russian Federation
V. V. Mitrikas
Russian Federation
I. O. Skakun
Russian Federation
References
1. Jäggi, A., Hugentobler, U., Bock, H. and Beutler, G., Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data, Advances in Space Research, 2007, vol. 39, no. 10, pp. 1612–1619.
2. Bock, H., Jäggi, A., Švehla, D., Beutler, G., Hugentobler, U. and Visser, P., Precise orbit determination for the GOCE satellite using GPS, Advances in Space Research, 2007, vol. 39, no. 10, pp. 1638–1647.
3. Haines, B., Bar-Sever, Y., Bertiger, W., Desai, S. and Willis, P., One-centimeter orbit determination for Jason-1: New GPS-based strategies, Marine Geodesy, 2004, vol. 27, no. 1–2, pp. 299–318.
4. Schaer, S. et al., New ambiguity-fixed IGS clock analysis products at CODE, Proc. IGS Workshop, 2018, p. 54.
5. Anderle, R.J., Point positioning concept using precise ephemeris. Satellite Doppler positioning, Proc. International Geodetic Symposium, 1976, vol. 1, pp. 47–76.
6. Wu, S.C., Yunck, T.P. and Thornton, C.L., Reduced-dynamic technique for precise orbit determination of low earth satellites, Journal of Guidance, Control and Dynamics, 1991, vol. 14, pp. 24–30.
7. Kosenko, V.E., Comprehensive studies into justification of development options, construction principles, and determining the design of a space system for global geodetic monitoring, Al'manakh sovremmenoi metrologii, 2015, no. 3, pp. 9–20.
8. GEO-IK-2, https://www.iss-reshetnev.ru/projects/geodesy/project-geo-ik-2. Cited September 19, 2018.
9. Bar-Sever, Y., Young, L., Stocklin, F. and Rush, J., The NASA global differential GPS system (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS), ESA 2nd Workshop on Navigation User Equipment, 2004.
10. Povalyaev, A.A., Sputnikovye radionavigatsionnye sistemy: vremya, pokazaniya chasov, formirovanie izmerenii i opredelenie otnositel’nykh koordinat (Satellite Radio Navigation Systems: Time, Clock Readings, Forming of Measurements and Determination of Relative Coordinates), Moscow: Radiotekhnika, 2008.
11. Skakun, I.O. and Mitrikas, V.V., Comparison of time scales by the common-view method using GLONASS measurements and taking into account the integer property of phase ambiguities, Gyroscopy and Navigation, 2018, vol. 9, no. 2. pp. 138–146.
12. Perov, A.I. and Kharisov, V.N., GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Construction and Function Principles), Moscow: Radiotekhnika, 2010.
13. Petit, G. and Luzum, B. (Eds.), IERS Conventions, IERS Technical Note, 2010, no. 36, p. 179.
14. Mitrikas, V.V., Skakun, I.O. and Yanishevskii, V.V., Precise refinement of motion trajectories of low-orbit spacecraft based on GNSS measurements, using the data of IAC PNT, Proc. 6th AllRussian Conference with International Participants "Fundamental and Applied Positioning, Navigation and Time Support", St. Petersburg, 2015.
Review
For citations:
Zaliznyuk A.N., Karutin S.N., Mitrikas V.V., Skakun I.O. GLONASS-Aided High-Precision Navigation of Space Geodetic Systems. Giroskopiya i Navigatsiya. 2019;27(3):18-30. (In Russ.) https://doi.org/10.17285/0869-7035.0006



