Позиционирование летательного аппарата по видеоданным для контроля интегрированной навигационной системы при заходе на посадку
https://doi.org/10.17285/0869-7035.0011
Аннотация
Навигация по видеоданным уже на протяжении нескольких десятилетий остается востребованной в авиации. Поскольку существует необходимость оптического контроля процессов взлета и посадки при всепогодной эксплуатации, появилось множество новых разработок, обусловленных изменениями в области технологии чувствительных элементов и средств обработки данных, а также в авиационных требованиях. В статье приводится общий обзор разработок с 1960-х годов по настоящее время и рассматриваются некоторые аспекты видеокоррекции и контроля целостности интегрированных навигационных систем. Основное внимание уделяется контролю целостности с помощью видеоданных при заходе на посадку и приземлении самолета.
Об авторах
П. ХекерГермания
Хекер Петер. Доктор технических наук, профессор
У. Бестманн
Германия
Бестманн Ульф. Доктор технических наук
С. Ю. Волков
Германия
Волков Степан Юрьевич. Доктор технических наук
М. Ангерманн
Россия
Ангерманн Майк
А. Декирт
Россия
Декирт Андреас
Список литературы
1. International Civil Aviation Organization, Performance-Based Navigation Manual, Third Edition, ICAO, 2008.
2. Beier, K.K. and Gemperlein, H.H., Simulation of infrared detection range at fog conditions for enhanced vision systems in civil aviation, Aerospace Science and Technology, 2004, vol. 8, no.1, pp. 63–71.
3. Federal Aviation Administration, General Operating and Flight Rules, Section 91.155 14 CFR Part 91, 2019.
4. Lavigne, C., Durand, G. and Roblin, A., Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid, Applied Optics, 2006, vol. 45, no. 36, pp. 9140–9150.
5. Korn, B., Doehler, H.-U. and Hecker, P., MMW-radar-based navigation: solutions to the vertical position problem in Enhanced and Synthetic Vision, Orlando, Florida, 2000.
6. Watts, C.M., Lancaster, P., Pedross-Engel, A., Smith, J.R. and Reynolds, M.S., 2D and 3D millimeter-wave synthetic aperture radar imaging on a PR2 platform, Proc. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4304–4310. doi: 10.1109/IROS.2016.7759633.
7. Brown, J.A., Autonomous landing guidance program, Proc. SPIE, vol. 2736, Enhanced and Synthetic Vision, 1996. doi: 10.1117/12.241048.
8. Bui, L.Q., Franklin, M.R., Taylor, C. and Neilson, G., Autonomous landing guidance system validation, Proc. SPIE, vol. 3088, Enhanced and Synthetic Vision, 1997. doi: 10.1117/12.277241.
9. Tospann, F.-J., Pirkl, M. and Gruener, W., Multifunction 35-GHz FMCW radar with frequency scanning antenna for synthetic vision applications, Proc. SPIE 2463, Synthetic Vision for Vehicle Guidance and Control, 1995. DOI: 10.1117/12.212752.
10. Korn, B., Doehler, H.-U. and Hecker, P., Weather independent flight guidance: analysis of MMW radar images for approach and landing, Proc. 15th International Conference on Pattern Recognition (ICPR-2000), 2000, vol. 1, pp. 350–353. doi: 10.1109/ICPR.2000.905350.
11. Vaman, D., TRN history, trends and the unused potential, Proc. 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), 2012, pp. 1A3-1–1A3-16. doi: 10.1109/DASC.2012.6382278.
12. Nassar, A., Amer, K., El Hakim, R. and El Helw, M., A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization, Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 1513–1523.
13. Huang, S.M., Huang, C.C. and Chou, C.C., Image registration among UAV image sequence and Google satellite image under quality mismatch, Proc. 2012 12th International Conference on ITS Telecommunications, 2012, pp. 311–315. doi: 10.1109/ITST.2012.6425189.
14. Project: IMage BAsed Landing Solutions (IMBALS) http://flag.be/projects/image-based-landingsolutions-imbals/, accessed on September 12, 2019.
15. CORDIS IMage BAsed Landing Solutions https://cordis.europa.eu/project/rcn/213819/factsheet/en, accessed September 12, 2019.
16. Korn, B., Doehler, H.-U. and Hecker, P., Navigation integrity monitoring and obstacle detection for enhanced vision systems, Proc. SPIE Enhanced and Synthetic Vision, 2001, pp. 51–57.
17. Vezinet, J., Escher, A.-C., Guillet, A. and Macabiau, C., State of the art of image-aided navigation techniques for aircraft approach and landing, Proc. 2013 International Technical Meeting of The Institute of Navigation (IONITM 2013), 2013, pp. 473–607.
18. Hrabar, S., 3D path planning and stereo-based obstacle avoidance for rotorcraft UAVs, Proc. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 807–814. DOI: 10.1109/IROS.2008.4650775.
19. Shuai, C., Wang, H., Zhang, W., Yao, P. and Qin, Y., Binocular vision perception and obstacle avoidance of visual simulation system for power lines inspection with UAV, Proc. 36th Chinese Control Conference (CCC), 2017, pp. 10480–10485. doi: 10.23919/ChiCC.2017.8029026.
20. Bryson, M. and Sukkarieh, S., Building a robust implementation of bearing-only inertial SLAM for a UAV, Journal of Field Robotics, 2007, vol. 24, no. 2, pp. 113–143.
21. Liu, Y.C. and Dai, Q.H., Vision aided unmanned aerial vehicle autonomy: An overview, Proc. 3rd International Congress on Image and Signal Processing (CISP), 2010, pp. 417–421.
22. Miller, A., Shah, M. and Harper, D., Landing a UAV on a runway using image registration, Proc. 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, pp. 182–187.
23. Gibert, V. and Puyou, G., Landing of an airliner using image based visual servoing, Proc. 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS), 2013, vol. 46, no. 23, pp. 74–79.
24. Bourquardez, O. and Chaumette, F., Visual Servoing of an Airplane for Alignment with respect to a Runway, Proc. IEEE International Conference on Robotics and Automation, 2007, pp. 1330–1355.
25. Tang, D., Li, F., Shen, N. and Guo, S., UAV attitude and position estimation for vision-based landing, Proc. 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), Harbin, IEEE 2011, pp. 4446–4450.
26. Chatterji, G.B., Menon, P.K. and Sridhar, B., GPS/machine vision navigation system for aircraft, IEEE Trans. Aerosp. Electron. Syst., 1997, vol. 33, no. 3, pp. 1012–1025.
27. Sharp, C.S., Shakernia, O. and Sastry, S.S., A vision system for landing an unmanned aerial vehicle, Proc. 2001 IEEE International Conference on Robotics and Automation (ICRA), 2001, pp. 1720–1727.
28. Dickmanns, E.D. and Schell, F.-R., Autonomous landing of airplanes by dynamic machine vision, Proc. 1992 IEEE Workshop on Applications of Computer Vision, 1992, pp. 172–179.
29. Li, F., Tang, D.Q. and Shen, N., Vision-based pose estimation of UAV from line correspondences, Procedia Engineering, 2011, vol. 15, pp. 578–584.
30. Zhuang, L., Han, Y., Fan, Y., Cao, Y., Wang, B. and Zhang, Q., Method of pose estimation for UAV landing, Chin. Opt. Lett, 2012, vol. 10, no. 2, p. S20401.
31. Performance-Based Navigation (PBN) Manual, International Civil Aviation Organization, 2008.
32. Schwithal, A., Tonhäuser, C., Wolkow, S., Angermann, M., Hecker, P., Mumm, N. and Holzapfel, F., Integrity monitoring in GNSS/INS systems by optical augmentation, Proc. 2017 DGON Intertial Sensors and Systems (ISS), IEEE, Karlsruhe, 2017.
33. Wolkow, S., Schwithal, A., Tonhäuser, C., Angermann, M. and Hecker, P., Image-aided position estimation based on line correspondences during automatic landing approach, Proc. ION 2015 Pacific PNT Meeting, 2015, pp. 702–712.
34. Wolkow, S., Schwithal, A., Tonhäuser, C., Angermann, M., Bestmann, U. and Hecker, P., Benefits and challenges of optical positioning during landing approach, Proc. ION 2017 Pacific PNT Meeting, Honolulu, Hawaii, 2017, pp. 292–299.
35. Dekiert, A.M., Wolkow, S., Angermann, M., Bestmann, U. and Hecker, P., Advantages and challenges of using infrared cameras for relative positioning during landing, Proc. ION 2019 International Technical Meeting (ITM), Reston, Virginia, 2019, pp. 896–908.
36. Eitner, C. and Holzapfel, F., Development of a navigation solution for an image aided automatic landing system, Proc. ION 2013 Pacific PNT Meeting, Honolulu, Hawaii, 2013, pp. 879–891.
37. Wolkow, S., Schwithal, A., Angermann, M., Dekiert, A. and Bestmann, U., Accuracy and availability of an optical positioning system for aircraft landing, Proc. ION 2019 International Technical Meeting ITM, Reston, Virginia, 2019, pp. 884–895.
38. Angermann, M., Wolkow, S., Schwithal, A., Tonhäuser, C. and Hecker, P., High precision approaches enabled by an optical-based navigation system, Proc. ION 2015 Pacific PNT Meeting, Honolulu, Hawaii, 2015, pp. 694–701.
39. Wolkow, S., Angermann, M., Dekiert, A. and Bestmann, U., Model-based threshold and centerline detection for aircraft positioning during landing approach, Proc. ION 2019 Pacific PNT Meeting, Honolulu, Hawaii, 2019, pp. 767–776.
40. Angermann, M., Wolkow, S., Dekiert, A., Bestmann, U. and Hecker, P., Fusion of dual optical position solutions for augmentation of GNSS-based aircraft landing systems, Proc. ION 2019 International Technical Meeting, Reston, Virginia, 2019, pp. 283–295.
41. Angermann, M., Wolkow, S., Dekiert, A., Bestmann, U. and Hecker, P., Linear blend: data fusion in the image domain for image-based aircraft position during landing approach, Proc. ION 2019 Pacific PNT Meeting, Honolulu, Hawaii, 2019, pp. 752–766.
42. Tessier, C., Cariou, C., Debain, C., Chausse, F., Chapuis, R. and Rousset, C., A real-time, multi-sensor architecture for fusion of delayed observations: application to vehicle localization, Proc. 2006 IEEE Intelligent Transportation Systems Conference, Toronto, Ont., 2006, pp. 1316–1321. DOI: 10.1109/ITSC.2006.1707405.
43. International Civil Aviation Organization, Annex 10 to the Convention on International Civil Aviation: Aeronautical Telecommunications, Montréal, Quebec: ICAO, 2006.
44. International Civil Aviation Organization, Required Navigation Performance Authorization Required (RNP AR) Procedure Design Manual, Montréal, Quebec: ICAO, 2009.
45. RTCA DO-253C, Minimum Operational Performance Standards for GPS Local Area Augmentation System Airborne Equipment.
46. RTCA DO-245A, Minimum Aviation System Performance Standards for Local Area Augmentation System (LAAS).
47. RTCA DO-229D, Minimum Operational Performance Standards for Global Positioning System/ Wide Area Augmentation System Airborne Equipment.
48. Tonhäuser, C., Schwithal, A., Wolkow, S., Angermann, M. and Hecker, P., Integrity concept for image-based automated landing systems, Proc. ION 2015 Pacific PNT Meeting, Honolulu, Hawaii, 2015, pp. 733–747.
49. Federal Aviation Administration, Criteria for Approval of Category I and Category II Weather Minima for Approach, AC120-29A, 2002.
50. Brenner, M., Integrated GPS/inertial fault detection availability, Proc. Technical Meeting of the Satellite Division of ION, Kansas City, 1995, pp. 1949–1958.
51. CORDIS, Validation of Integrated Safety-enhanced Intelligent flight cONtrol (VISION), https://cordis.europa.eu/project/rcn/199918/factsheet/en, accessed September 12, 2019.
52. VISION Project summary, https://w3.onera.fr/h2020_vision/, accessed September 12, 2019.
53. Watanabe, Y., Manecy, A., Hiba, A., Nagai, S. and Shin, A., Vision-integrated navigation system for aircraft final approach in case of GNSS/SBAS or ILS failures, Proc. AIAA Scitech 2019 Forum, San Diego, CA, 2019.
54. Golden, J.P., Terrain Contour Matching (TERCOM): A Cruise Missile Guidance Aid, Proc. SPIE 0238, Image Processing for Missile Guidance, 23 December 1980. DOI:10.1117/12.959127.
55. Siouris, G.M., Missile guidance and control systems, Springer, New York, NY, 2004, 666 pp. ISBN: 0-387-00726-1.
56. Yoo, Y.M., Lee, W.H., Lee, S.M., Park, C.G., and Kwon, J.H., Improvement of TERCOM aided inertial navigation system by velocity correction, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, 2012, pp. 1082–1087. DOI: 10.1109/PLANS.2012.6236851.
Рецензия
Для цитирования:
Хекер П., Бестманн У., Волков С.Ю., Ангерманн М., Декирт А. Позиционирование летательного аппарата по видеоданным для контроля интегрированной навигационной системы при заходе на посадку. Гироскопия и навигация. 2019;27(4):29-51. https://doi.org/10.17285/0869-7035.0011
For citation:
Hecker P., Bestmann U., Wolkow S., Angermann M., Dekiert A. Optical Aircraft Positioning for Monitoring of the Integrated Navigation System during Landing Approach. Giroskopiya i Navigatsiya. 2019;27(4):29-51. https://doi.org/10.17285/0869-7035.0011



