Micronavigation System to Support a Radar with Synthetic Aperture aboard a Small UAV
https://doi.org/10.17285/0869-7035.0010
Abstract
The paper describes the experience of constructing an integrated INS/GNSS navigation system for supporting a radar with a synthesized side-view aperture, located aboard a small-sized unmanned aerial vehicle (UAV). Key features and factors that should be taken into account when developing a navigation system operated under severe conditions are studied. Flight test results are presented, including the estimates of MEMS-based micronavigation system accuracy. The analysis is based on the radio signals reflected from angle reflectors, as well as radar images obtained by constructing a matched filter based on the micronavigation system data.
About the Authors
V. I. KulakovaRussian Federation
S. A. Nozdrin
Russian Federation
A. Yu. Sokharev
Russian Federation
D. V. Tsarik
Russian Federation
References
1. Kondratenkov, G.S. and Frolov, A.Yu., Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli (Radiovision. Radar systems for remote probing of the Earth), Moscow: Radiotekhnika, 2005.
2. Antipov, V.I., Goryainov, V.T., Kulin, A.N. et al., Radiolokatsionnye stantsii s tsifrovym sintezirovaniem apertury antenny (Radar stations with digital synthesis of antenna aperture), V.T. Goryainov ed., Moscow: Radio i svyaz’, 1988.
3. Carrera, W.G., Goodman, R.S., and Majewski, R.M., Spotlight synthetic aperture radar: signal processing algorithms, Boston: Artech House, 1995.
4. Kennedy, Th.A., Strapdown inertial measurement units for motion compensation for synthetic aperture radars, IEEE AES Magazine, 1988, vol. 3, no. 10, pp. 32–35.
5. Bilik, V.V., Kovregin, V.N., Chernodarov, A.V. and Patrikeev, A.P., A spatially distributed micronavigation system for a synthetic-aperture radar, Proceedings of the 18th St. Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Concern CSRI Elektropribor, 2011, pp. 185–194.
6. Krasilshchikov, M.N., Kozorez, D.A., Sypalo, K.I., Samarin, O.F. and Savost’yanov, V.Yu., High-accuracy positioning of phase center of multifunction airborne radar antenna, Gyroskopy and Navigation, 2013, no. 3, pp. 164–173.
7. Bulgakov, S.L., Mikheenkov, Yu.P., Kryuchkov, V.N., Fedoskin, O.I. and Khilevich, D.A., Inertial-satellite navigation system for synthetic aperture radar, Proceedings of the 19th St. Petersburg International Conference on Integrated Navigation Systems (ICINS), St. Petersburg, Concern CSRI Elektropribor, 2012, pp. 163–168.
8. Kulakova, V.I. and Sokharev, A.Yu., Navigation system for antenna tracking onboard a small UAV, Uspekhi sovremennoi elektroniki, 2017, no. 10, pp. 5–14.
9. Cao Fuxiang and Bao Zheng, Analysis and simulation of GPS/SINU integrated system for airborne SAR motion compensation, Proceedings of the 2001 CIE International Conference on Radar, Beijing, China, 2001, pp. 1173–1177.
10. Tan, G.W., Motion compensation research based on motion sensors, International Conference on Multimedia Technology, Ningbo, China, 2010, pp. 1–4.
11. Chen, L., Liu, Z., and Fang, J., An accurate motion compensation for SAR imagery based on INS/GPS with dual-filter correction, Journal of Navigation, 2019, vol. 72, no. 6, pp. 1399–1416.
12. Fan, B., Ding, Z., Gao, W., and Long, T., An improved motion compensation method for high resolution UAV SAR imaging, Science China Information Sciences, 2014, vol. 57, no. 12, pp. 1–13.
13. Aguasca, A., Acevo-Herrera, R., Broquetas, A., Mallorqui, J.J., and Fabregas, X., ARBRES: light-weight CW/FM SAR sensors for small UAVs, Sensors, 2013, vol. 13, no. 3, pp. 3204–3216.
14. Zhang, L., Qiao, Z. J., Xing, M., Yang, L., and Bao, Z.A., A robust motion compensation approach for UAV SAR imagery, IEEE Transactions on Geoscience and Remote Sensing, 2012, vol. 50, no. 8, pp. 3202–3218.
15. https://ru.wikipedia.org/wiki/Orlan-10.
16. Kulakova, V.I., Method of experimental verification of accuracy of UAV antenna phase center motion parameters determined by navigation system, Gyroscopy and Navigation, 2018, vol. 9, no. 4, pp. 334–343.
17. Savage, P.G., Strapdown Analytics. Parts 1 and 2, Maple Plain, MN: Strapdown Associates, 2000.
18. Emel’yantsev, G.I., and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated inertial satellite systems of orientation and navigation), V.G. Peshekhonov, Ed., Concern CSRI Elektropribor, JSC, 2016.
19. Kolodezhnyi, L.P. and Chernodarov, A.V., Nadezhnost’ i tekhnicheskaya diagnostika (Reliability and technical diagnostics), Moscow: Zhukovskii and Gagarin Military Airforce Academy, 2010.
Review
For citations:
Kulakova V.I., Nozdrin S.A., Sokharev A.Yu., Tsarik D.V. Micronavigation System to Support a Radar with Synthetic Aperture aboard a Small UAV. Giroskopiya i Navigatsiya. 2019;27(4):130-146. (In Russ.) https://doi.org/10.17285/0869-7035.0010



