Nuclear Magnetic Resonance Gyro: Threshold Characteristics
https://doi.org/10.17285/0869-7035.2018.26.1.055-080
Abstract
The paper presents the estimations of the main threshold metrological parameters of a nuclear magnetic resonance gyro (NMG) on xenon isotopes. Principal factors limiting the sensitivity are listed, such as atomic projection noise and light fluctuation noise. Formulas are derived to estimate the threshold sensitivity of NMG and study its dependence on the sensor parameters. The main causes of NMG drifts are considered, as well as possible ways to improve its metrological characteristics.
About the Authors
A. K. VershovskiiRussian Federation
Yu. A. Litmanovich
Russian Federation
A. S. Pazgalev
Russian Federation
V. G. Peshekhonov
Russian Federation
References
1. Peshehonov, V.G., Navigatsionnуe sistemy (in Russian), Vestnik RAN (Herald of the Russian Academy of Sciences), 1997, vol. 67, no.1, pp. 43–52.
2. Peshehonov, V.G., Gyroscopic navigation systems: Current status and prospects, Gyroscopy and Navigation, 2011, vol. 2, no.3, pp. 111–118.
3. Karwacki, F.A., Nuclear magnetic resonance gyro development, J. Inst. Navigation, 1980, vol.27, no.1, pp.72–78.
4. Goldstein, M.G. et al., Inertial Navigation, Proc. IEEE, 1983, vol. 71, pp.1156–1176.
5. Härle, P., Wäckerle, G., and Mehring, M., A Nuclear-Spin Based Rotation Sensor Using Optical Polarization and Detection Methods, Appl. Magn. Reson, 1993, vol. 5, pp. 207–220.
6. Kornack, T.W., Ghosh, R.K., and Romalis, M.V., Nuclear spin gyroscope based on an atomic comagnetometer, Phys. Rev. Lett, 2005, vol. 95, pp. 230801.
7. Kitching, J., Knappe, S., and Donley, E.A., Atomic Sensors – A Review, IEEE Sensors, 2011, vol. 11, no.11, pp.1749-1758.
8. Zhang, C., Yuan, H., Tang, Z., Quan, W., and Fang, J. C., Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory, Appl. Phys. Reviews, 2016, vol. 3, p. 041305.
9. Meyer, D., and Larsen, M., Nuclear magnetic resonance gyro for inertial navigation, Gyroscopy and Navigation, 2014, vol. 5, no.2, pp. 75–82.
10. Walker, T.G., Larsen, M.S., Spin-Exchange-Pumped NMR Gyros, Adv. At. Mol. Opt. Phys., 2016, vol. 65, pp. 377–405.
11. Grover, B.C. Noble-Gas NMR Detection through Noble-Gas-Rubidium Hyperfine Contact Interaction, Phys. Rev. Lett.,1978, vol.40, no.6, pp. 391–392.
12. Schaefer, S. R., Cates, G. D., Chien, T.-R., Gonatas, D., Happer, W., and Walker, T.G. Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms, Phys. Rev. A, 1989, vol. 39, no. 11, pp. 5613–5623.
13. Liu Y., Shi M., and Wang X., Progress on atomic gyroscope, Proc. of the 24th St. Petersburg International Conference on Integrated Navigation Systems, St.Petersburg, Russia, 2017, pp.344–352.
14. Wang, S.G., Xu, C., Feng, Н.Н., and Wang, L.J., Progress on Novel Atomic Magnetometer and Gyroscope Based on Self-sustaining of Electron Spins, China Satellite Navigation Conference (CSNS), 2017, Proc. vol. 2, pp. 535–541.
15. Happer, W., Jau, Y.-Y., and Walker, T., Optically Pumped Atoms, WILEY-VCH Verlag GmbH & Co. KGaA, 2011, p. 234.
16. Gemmel, C., Heil, W., Karpuk, S., et.al., Ultra-sensitive magnetometry based on free precession of nuclear spins, Eur. Phys. J. D, 2010, vol. 57, pp. 303–320.
17. Budker, D., Romalis, M., Optical Magnetometry, Nature Physic, 2007, vol.3, pp. 227–234.
18. Ventsel, E.S., Teoriya Veroyatnostei (Probability Theory) [in Russian], Vysshaya Shkola, Moscow, 1999, 576 p.
19. IEEE std. 1554-2005, IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis, IEEE Aerospace and Electronic Systems Society, 2005, Chapter 19.7.2, Velocity and angle random walk per root hour.
20. Cohen-Tannoudji, C., DuPont-Roc, J., Haroche, S., Laloe, F., Detection of the Static Magnetic Field Produced by the Oriented Nuclei of Optically Pumped 3He Gas, Phys. Rev. Lett., 1969, vol. 22, no. 15, pp.758–760.
21. Armenise, M.N. et al., Advances in Gyroscope Technologies. Springer-Verlag, Berlin, 2010, (Eq.1.8).
22. Aleksandrov, E.B., Vershovskii, A.K., Modern radio-optical methods in quantum magnetometry, Physics–Uspekhi, 2009, vol. 52, no. 6, pp.573–601.
23. Kanegsberg, E., A Nuclear Magnetic Resonance (NMR) Gyro With Optical Magnetometer Detection, Proc. SPIE, 1978, vol.157, Laser Inertial Rotation Sensors, pp.73–80.
24. Vershovski, A.K, and Pazgalev, A.S., Optimization of Quality Factor of Optically Pumped Mxresonance, Technical Physics, 2008, vol.53, no.5, pp.646–654.
25. Pitz, G.A., Wertepny, D.E., and Perram, G.P., Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He, Phys. Rev A, 2009, vol.80, p. 062718.
26. Zeng, X., Wu, Z., Call, T., Miron, E., Schreiber, D., and Happer, W., Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and Xe nuclei in alkali-metal–noble-gas van der Waals molecules, Phys. Review A, 1985, vol. 31, no.1, pp. 260–278.
27. Happer, W., Spin Exchange - past, present, and future, Ann. Phys. Fr., 1985, vol. 10, pp. 645–657.
28. Happer, W., Miron, E., Schaefer, S., Schreiber, D., van Wijngaarden, W.A., and Zeng, X., Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkalimetal atoms, Phys. Rev. A, 1984, vol. 29, no. 6, pp. 3092–3110.
29. Cates, G.D., Fitzgerald, R.J., Barton, A.S., Bogorad, P., Gatzke, M., Newbury, N.R., and Saam, B., Rb129Xe spin-exchange rates due to binary and three-body collisions at high Xe pressures, Phys. Rev. A, 1992, vol. 45, no. 5, pp. 4631–4639.
30. Walker, T.G., Happer, W., Spin-exchange optical pumping of noble-gas nuclei, Reviews of Modern Physics, 1997, vol. 69, no. 2, pp. 529–642.
31. Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., et Laloë, F., Diverses resonances de croisement de niveaux sur des atomes pompes optiquement en champ nul. I. Theorie, Rev.de Phys. Appl, 1970, vol. 5, pp. 95–101.
32. Bulatowicz, M., Griffith, R., Larsen, M., et al., Laboratory Search for a Long-Range T-Odd,P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polaized 129Xe and 131Xe Gas, Phys. Rev. Lett., 2013, vol. 111, p. 102001.
33. Salleras, M., Eklund, E.J., Prikhodko, I.P., and Shkel, A.M., Predictive thermal model for indirect temperature measurement inside atomic cell of nuclear magnetic resonance gyroscope, TRANSDUCERS 2009 – International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, pp. 304–307.
34. Nesmeyanov, A. N., Vapour Pressure of the Elements (translated by J. I.Carasso) / Academic Press. NY, 1963, 469 p.
Review
For citations:
Vershovskii A.K., Litmanovich Yu.A., Pazgalev A.S., Peshekhonov V.G. Nuclear Magnetic Resonance Gyro: Threshold Characteristics. Giroskopiya i Navigatsiya. 2018;26(1):55-80. (In Russ.) https://doi.org/10.17285/0869-7035.2018.26.1.055-080



