Laser Source for Compact Nuclear Magnetic Resonance Gyroscope
https://doi.org/10.17285/0869-7035.2018.26.1.081-092
Abstract
895 nm vertical-cavity surface-emitting lasers (VCSELs) with fixed output polarization have been developed. Lasers provide more than 1 mW single-mode output power at about 20 dB orthogonal polarization suppression ratio at operation temperature 60°С. The developed VCSELs were used in laser sources for perspective compact nu-clear-magnetic-resonance gyroscope. Designed laser source provides precise wave-length tuning to the D1 line of Cs133 and collimated output beam.
About the Authors
N. A. MaleevRussian Federation
S. A. Blokhin
Russian Federation
M. V. Bobrov
Russian Federation
A. G. Kuzmenkov
Russian Federation
M. M. Kulagina
Russian Federation
V. M. Ustinov
Russian Federation
References
1. E. A. Donley, J. Kitching, Nuclear magnetic resonance gyroscopes. In: Optical magnetometry. Сam-bridge university press, Ch. 19, pp. 369-386 (2013)
2. D. K. Serkland, G. M. Peake, K. M. Geib, R. Lutwak, R.M. Garvey; M. Varghese; M. Mescher, VCSELs for atomic clocks, vertical-cavity surface-emitting lasers X, Proc. SPIE 6132, 613208 (2006)
3. W. Zhong, Review of chip-scale atomic clocks based on coherent population trapping, Chin. Phys. B., vol. 23, No. 3, 030601 (2014)
4. T.G.Walker, M.S.Larsen, Spin-exchange pumped NMR gyros, Advances in atomic, molecular, and optical physics, v.65, pp.373-401 (2016)
5. P.Knapkewicz, J. Dziuban, R. Walczak, L. Mauri, P. Dziuban, C. Gorecki, MEMS Cesium vapor cell for european micro-atomic-clock, Procedia engineering, vol.5, pp.721-724 (2010)
6. L.Chen, B. Zhou, G. Lei, W. Wu, Y. Zhai, Z. Wang, J. Fang, Effects of temperature on Rb and 129Xe spin polarization in a nuclear magnetic resonance gyroscope with low pump power, AIP Advances, 7, 115101 (2017)
7. R. Michalzik, VCSELs, Fundamentals, technology and applications of vertical cavity surface- emitting lasers, Springer (2013)
8. A. Mutig, D. Bimberg, Progress on high-speed 980 nm VCSELs for short-reach optical intercon-nects, Hindawi publishing corporation advances in optical technologies 2011, 15 (2011)
9. K.D. Choquette, K.M. Geib, C.I. H. Ashby, R.D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B.E. Hammons, D. Mathes, R. Hull, Advances in selective wet oxidation of AlGaAs alloys, IEEE J. Selected topics in quantum electronics. 3(3), 916–926 (1997)
10. A. Larsson, Advances in VCSELs for communication and sensing, IEEE J. of Selected Topics in Quantum Electronics 17, 1552–1567 (2011).
11. J.A. Tatum, Evolution of VCSELs, Proc. of SPIE 9001, 90010C (2013).
12. www.pricetonoptronics.com
13. www.laserinterprise.com
14. A.Al-Samaneh, VCSELs for Atomic clock demonstrators, Annual report 2013, Institute of optoe-lectronis, Ulm University
15. http://vixarinc.com/pdf/895S-0000-x002.pdf
16. D. K. Serkland, K. M. Geib, G. M. Peake, R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, M. Prouty, VCSELs for atomic sensors, Vertical-cavity surface-emitting lasers XI, Proc. SPIE 6484, 648406 (2007)
17. Carl W. Wilmsen, Henryk Temkin, Larry A. Coldren, Vertical-cavity surface-emitting lasers: design, fabrication, characterization, and applications, Cambridge university press (2001)
18. Y-C. Chang, L.A. Coldren, Efficient, high-data-rate, tapered oxide-aperture vertical-cavity sur-face-emitting lasers, IEEE J. Selected topics quantum. Electron., 15, 704-715 (2009).
19. G.W. Pickrella, D.A. Louderbacka, M.A. Fisha, J.J. Hindia, H.C. Lina, M.C. Simpsona, P.S. Guilfoylea, K.L. Lear, Compositional grading in distributed Bragg reflectors, using discrete alloys, in verti-calcavity surface-emitting lasers, Journal of Crystal Growth, 280, 54–59 (2005)
20. N.A. Maleev, A.G. Kuz`menkov, M.M. Kulagina, Yu.M. Zadiranov,A.P. Vasil`ev, S.A. Blokhin, A.S. Shulenkov, S.I. Troshkov, A.G. Gladyshev, A.M. Nadtochiy, M.M. Pavlov, M.A. Bobrov, D.E. Nazaruk, V.M. Ustinov, Single-spatial-mode semiconductor VCSELs with a nonplanar upper dielectric DBR, Semiconductors, vol.47, pp. 993-996 (2013)
21. Блохин С.А., Малеев Н.А, Кузьменков А.Г., Устинов В.М. Патент РФ на изобретение №2611555, приоритет от 17.12.2015
22. M.A.Verschuuren, P. Gerlach, H.A. van Sprang, A. Polman, Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint li-thography, Nanotechnology 22, 505201 (2011)
23. D.E. Nazaruk, S.A. Blokhin, N.A. Maleev, M.A. Bobrov, A.G. Kuzmenkov, A.P. Vasil’ev, A.G. Gladyshev, M.M. Pavlov, A.A. Blokhin, M.M. Kulagina, K.A. Vashanova, Yu.M. Zadiranov, A.G. Fefelov, V.M. Ustinov, Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers, J. Phys.: Conf. Ser., v.572, 1 ArtNo: #012036 (2014)
24. Akira Sakamoto, Takeshi Nakamura, Hideo Nakayama, Fabrication control during AlAs oxi-dation of the VCSELs via optical probing technique of AlAs lateral oxidation (OPTALO), Proc. of SPIE 4649, 211-217 (2002).
25. G. R. Hadley, Effective index model for vertical-cavity surface-emitting lasers, Opt. Lett., Vol. 20. P.1483-1485 (1995).
26. S.A. Blokhin, M.A. Bobrov, A.G. Kuzmenkov, A.A. Blokhin, A.P. Vasil`ev, Yu.A. Guseva, M.M. Kulagina, I.O. Karpovsky, Yu.M. Zadiranov,S.I. Troshkov, N.D. Prasolov, P.N. Brunkov, V.S. Levitsky, V.Lisak, N.A. Maleev, V.M. Ustinov, A study of distributed dielectric Bragg reflectors for vertically emitting lasers of the near-IR range, Tech. Phys. Lett., v.42, pp. 1049-1053 (2016).
Review
For citations:
Maleev N.A., Blokhin S.A., Bobrov M.V., Kuzmenkov A.G., Kulagina M.M., Ustinov V.M. Laser Source for Compact Nuclear Magnetic Resonance Gyroscope. Giroskopiya i Navigatsiya. 2018;26(1):81-92. (In Russ.) https://doi.org/10.17285/0869-7035.2018.26.1.081-092



