Preview

Gyroscopy and Navigation

Advanced search

About the Deviation of Electromagnetic Pulses in an Earth-Fixed Rotating Reference Frame

Abstract

The position of an artificial Earth satellite or the Moon is determined by laser ranging. Laser measurements of distances are carried out from ground stations to satellites equipped with corner reflectors or to the reflectors located on the surface of the Moon. The time interval between the emission and reception of ultrashort laser pulses at the same station make it possible to determine the position of the satellite or the Moon at the moment of reflection. In this case, the signal emitted from the station and the reflected signal from the satellite follow different paths. In this case, an angle is formed between the direction of the emitted and reflected signals at the location point. It is this deviation of laser signal paths that is the subject-matter of this paper. Since the Earth-fixed rotating reference frame is noninertial, calculations are performed with consideration for the theory of relativity. The spherical shape of the Earth and the Keplerian orbits of satellites are considered without taking into account the Earth’s gravitational field. The signal deviation significantly depends both on the satellite orbital parameters and the Earth’s rotation rate. The mathematical calculations allow the authors to generalize and compare the results of studies of this effect obtained from various available publications. They were also used in numerical calculations on the example of a high-orbit and high-eccentricity satellite RadioAstron and all of the 24 GLONASS low-orbit satellites with minor eccentricities. The magnitudes of both the effect itself and its variations depending on the changes in the satellite orbit parameters are calculated. The accuracy of modern instruments is sufficient to record the effect, and the result obtained will increase the efficiency of their application. In the future, it is planned to evaluate the factors of the Earth oblateness and its gravitational potential.

About the Authors

E. M. Mazurova
Public Not-for Profit Organization “Roskadastr”,
Russian Federation

Moscow



A. N. Petrov
Public Not-for Profit Organization “Roskadastr”; Lomonosov Moscow State University
Russian Federation

Moscow



F. S. Bakharev
Public Not-for Profit Organization “Roskadastr”
Russian Federation

Moscow



I. A. Clypin
Public Not-for Profit Organization “Roskadastr”; Moscow State University of Geodesy and Cartography
Russian Federation

Moscow



References

1. Чаплинский В.С. Приложение релятивистской теории к задачам траекторных измерений космических аппаратов // Космические исследования. 1985. Т. 23. Вып. 1. С. 49–62.

2. Брумберг В.А. Релятивистская небесная механика. М.: Наука, 1972.

3. Bartels, N., Allenspacher, P., Hampf, D., et al., Space object identification via polarimetric satellite laser ranging, Communications Engineering, 2022, vol. 1, p. 5.

4. EDC WEBSITE (2023) https://edc.dgfi.tum.de/en/

5. Glaser, S., König, R., Neumayer, K., et al., Future SLR station networks in the framework of simulated multi-technique terrestrial reference frames, J. Geod., 2019, vol. 93, pp. 2275–2291.

6. Hampf, D., Schafer, E., Sproll, F., et al., Satellite laser ranging at 100 kHz pulse repetition rate, CEAS Space, 2019, vol. 11, pp. 363–370.

7. Wilkinson, M., Schreiber, U., Procházka, I., et al., The next generation of satellite laser ranging systems, J. Geod., 2019, vol. 93, pp. 2227–2247.

8. Xue, L., Li, Z., Zhang, L., et al., Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength, Opt. Lett., 2016, vol. 16, pp. 3848–3851.

9. Kucharski, D., Kirchner, G., Otsubo, T., Koidl, F., A method to calculate zero-signature satellite laser ranging normal points for millimeter geodesy – a case study with Ajisai, Earth, Planets and Space, 2015, vol. 67. Article number: 34.

10. Ashby, N., Relativity in the Global Positioning System, Living Rev. Relativity, 2003, vol. 6, pp. 1–42.

11. Денисов М.М., Кравцов Н.В., Кривченков И.В. Оптические эффекты во вращающейся системе отсчета // Письма в ЖЭТФ. 2007. Т. 85. №8. С. 498–500.

12. Денисов М.М. Релятивистские поправки при лазерной локации космических аппаратов // Матем. моделирование. 2008. Т. 20. № 6. С. 57–66.

13. Денисов В.И., Денисов М.М. Математическое моделирование угловых искажений при лазерной локации ИСЗ «РадиоАстрон» // ЖВММФ. 2008. Т. 48. № 8. С. 1500–1509.

14. Денисов М.М., Зубрило А.А. Исследование распространения лазерного импульса во вращающейся системе отсчета // Вестник МУ. Серия 3. Физика. Астрономия. 2009. №6. С. 11–14.

15. Останина М.В., Пасисниченко М.А., Ростовский В.С. Математическое моделирование релятивистского эффекта при лазерной локации искусственных спутников Земли // Вестник МУ. Серия 3. Физика. Астрономия. 2013. № 6. С. 42–46.

16. Мазаева И. В., Пасисниченко М.А. Влияние релятивистского закона преобразования углов на результаты лазерной локации ИСЗ, находящихся на круговых орбитах и оснащенных единичными ретрорефлекторами // Вестник МУ. Серия 3. Физика. Астрономия. 2017. №4. С. 60–67.

17. Мазаева И.В., Гавриш О.Н., Лебедева М.В. Численное исследование эффективности лазерной локации искусственных спутников Земли, находящихся на эллиптических орбитах. // Вестник МУ. Серия 3. Физика. Астрономия. 2021. №4. С. 52–57.

18. Radioastron User Handbook, prepared by the RadioAstron Science and Technical Operations Groupб Version 2.94, 10 December 2019.

19. ДАННЫЕ ГЛОНАСС: https://glonass-iac.ru/glonass/ephemeris/

20. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1988.

21. Montenbruck, O., Gill, E., Satellite orbits: Models. Methods. Applications, Springer: Heidelberg, Dordrecht, London, New York, 2012.


Review

For citations:


Mazurova E.M., Petrov A.N., Bakharev F.S., Clypin I.A. About the Deviation of Electromagnetic Pulses in an Earth-Fixed Rotating Reference Frame. Gyroscopy and Navigation. 2024;32(2):151-167. (In Russ.)

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)