Preview

Giroskopiya i Navigatsiya

Advanced search

Suboptimal Algorithms Identifying the Navigation Sensor Errors Described by Markov Process

https://doi.org/10.17285/0869-7035.2016.24.3.055-062

Abstract

The paper considers the algorithms identifying the parameters of Markov process correlation function based on maximum likelihood function method, least squares method, and constructing sample characteristics. The algorithms are compared with the algorithms based on Bayesian approach.

About the Authors

V. A. Tupysev
Concern CSRI Elektropribor, St.Petersburg
Russian Federation


N. D. Kruglova
Concern CSRI Elektropribor, St.Petersburg
Russian Federation


A. V. Motorin
Concern CSRI Elektropribor, JSC, ITMO University, St.Petersburg
Russian Federation


References

1. Rivkin S.S., Ivanovskii S.S., and Kostrov A.V. Statisticheskaya optimizatsiya navigatsionnykh sistem (Statistical Optimization of Navigation Systems), Leningrad: Sudostroenie, 1989.

2. Stepanov O. A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 1. Introduction to the Estimation Theory)/ St. Petersburg: CSRI Elektropribor, 2010.

3. Stepanov O. A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 1. Vvedenie v teoriyu fil’tratsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 1. Introduction to the Filtering Theory). St. Petersburg: CSRI Elektropribor, 2012.

4. Litvinenko Yu.A. and Tupysev V.A. Comparative analysis of different types of federated filters as applied to the problems of navigation data processing, 22nd St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, CSRI Elektropribor, 2015. P. 101-105.

5. Brown R.G. Integrated navigation systems and Kalman filtering: A perspective, Navigation, USA, 1972-1973. Vol.19. No. 4.

6. Grewal M.S. and Andrews A.P. Kalman Filtering: Theory and Practice. Prentice Hall, New Jersey, 1993.

7. Gibbs, Bruce P. Advanced Kalman filtering, least-squares and modeling: A practical handbook, John Wiley&Sons, Inc., 2011.

8. Carlson N.A. Federated filter for fault-tolerant integrated navigation systems, AGARDograph 331, Aerospace Navigation Systems/ June 1995. P. 265-280.

9. Carlson N.A. and Berarucci M.P. Federated Kalman filter simulation results // Navigation. Journal of Institute of Navigation. 1994. Vol. 41. No.3. P. 297-321.

10. Vaisgant I.B. and Litvinenko Yu.A., Errors in navigation parameters of medium accuracy platform inertial systems depending on latitude // Izvestiya vuzov. Priborostroenie. 2002. No. 9.

11. Tupysev V.A., Stepanov O.A., Loparev A.V., and Litvinenko Yu.A. Guaranteed estimation in the problems of navigation information processing // IEEE Multi-Conference on Systems and Control. 2009. Saint Petersburg, Russia. P. 1672-1677.

12. Sergienko A.B. Tsifrovaya obrabotka signalov (Digital Signal Processing), St. Petersburg: Piter, 2002.

13. Litvinenko Yu.A. and Gosteva N.D. Studying the drift model of one degree-of-freedom floating gyro // Materialy 15 konferentsii molodykh uchenykh “Navigatsiya i Upravlenie Dvizheniem” (Proc. of the 15th Conference of Young Scientists “Navigation and Motion Control”). St. Petersburg: CSRI Elektropribor, 2013. P. 126.

14. Sveshnikov A.A. Prikladnye metody teorii sluchainykh funktsii (Applied Methods of Theory of Random Functions). Leningrad, 1961.

15. D’yakonov V.P. Mathematical and spectral analysis of real oscillograms in Matlab // Kontrol’noizmeritel’nye pribory i sistemy. 2010. No. 2.

16. Stepanov O.A., Sokolov A.I., and Dolnakova A.S. Analysis of potential accuracy of estimating the parameters of random processes in navigation data processing // Materialy XII Vserossiiskogo soveshchaniya po problemam upravleniya (Proceedings of the 12th All-Russian Meeting on Control Problems). Moscow: Trapeznikov institute of Control Sciences of Russian Academy of Sciences, 2014. P. 3324-3337.

17. Motorin A.V. and Stepanov O.A. Designing an error model for navigation sensors using Bayesian approach // Proc. 2015 IEEE International Conference on Multisensor Fusion and Integration. 2015. P. 54-58.

18. Motorin A.V., Stepanov O.A., and Vasiliev V.A. Identification of sensor errors by using of nonlinear filtering // IFAC-PapersOnLine. Vol. 48. Issue 11. Proc. of 1st Conference on Modeling, Identification and Control of Nonlinear Systems. MICNON-2015. P. 808-813.

19. D’yakonov V.P. Matlab 6.5 SP1/7 + Simulink 5/6®: Osnovy primeneniya (Matlab 6.5 SP1/7 + Simulink 5/6® Fundamentals of Use), Moscow: SOLON-Press, 2005.


Review

For citations:


Tupysev V.A., Kruglova N.D., Motorin A.V. Suboptimal Algorithms Identifying the Navigation Sensor Errors Described by Markov Process. Giroskopiya i Navigatsiya. 2016;24(3):55-62. (In Russ.) https://doi.org/10.17285/0869-7035.2016.24.3.055-062

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)