Preview

Gyroscopy and Navigation

Advanced search

Use of Marine Gravimetric Survey Data for Correcting the Satellite Models of the Global Gravity Field in the World Ocean

EDN: RVGALY

Abstract

   The article studies the possibilities of using the high-precision marine gravimetric survey data to correct the global models of the Earth’s gravity field in the World Ocean. The accuracy of modern models in water areas on a regional scale is determined by the capabilities of the satellite altimetry method and depends on the gravity field characteristics. On the gradient structures of the field, the amplitudes of real anomalies are suppressed in the models; therefore, for the models to be used more efficiently, it is necessary to restore high frequencies of anomalies in these models. On the abyssal structures, the main error in models is high-frequency noise. This paper describes the techniques for correcting the data obtained from these models, which makes it possible to increase the accuracy over fairly large areas, using a limited number of marine gravimetric measurements. The paper also provides the practical assessments of the new global altimetry model of the Earth’s gravity field Sandwell and Smith v32 in various regions of the World Ocean.

About the Author

P. S. Mikhailov
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences; Vladimir State University Named after Alexander and Nikolay Stoletov
Russian Federation

Moscow; Vladimir



References

1. Sandwell, D.T., Advanced Geodynamics: The Fourier Transform Method, Cambridge: Cam-bridge University Press, 2022, 284 p., doi: 10.1017/9781009024822.

2. Barthelmes, F., Global Models. Encyclopedia of Geodesy, edited by Grafarend, E., Springer International Publishing, 2014, 1–9, doi: 10.1007/978-3-319-02370-0_43-1.

3. Andersen, O.B., Marine Gravity and Geoid from Satellite Altimetry. Geoid Determination – Theory and Methods, Lecture Notes in Earth Science, 2013, vol. 110, pp. 401–451.

4. Бехтерев С.В., Дробышев М.Н., Железняк Л.К., Конешов В.Н., Михайлов П.С., Соловьев В.Н. Погрешности моделей гравитационного поля Земли в зависимости от морфологии рельефа дна океана // Физика Земли. 2019. №5. С. 118–122. DOI: 10.31857/S0002-333720195118-122.

5. Конешов В.Н., Дробышев Н.В., Железняк Л.К., Клевцов В.В., Соловьев В.Н. Методы и проблемы изучения гравитационного поля Мирового океана // Геофизические исследования. 2006. № 5. С. 32–54.

6. Железняк Л.К., Конешов В.Н., Михайлов П.С., Соловьев В.Н. Использование модели гравитационного поля Земли при измерениях силы тяжести на море // Физика Земли. 2015. № 4. С. 103–110. DOI: 10.7868/S0002333715040134.

7. Li, J., Sideris, M.G., Marine gravity and geoid determination by optimal combination of satellite altimetry and shipborne gravimetry data, Journal of Geodesy, 1997, vol. 71, no.4, pp. 209–216, doi: 10.1007/s001900050088.

8. Tziavos, I.N., Forsberg, R., Siders, M.G., Marine gravity field recovery by combining satellite altimetry and shipborne gravimetry, Boll. Geof. Teor. Appl., 1999, vol. 40, no. 3–4, pp. 219–226.

9. Vergos, G.S., Grebenitcharsky, R.S., Sideris, M.G., Combination of Multi-Satellite Altimetry and Shipborne Gravity Data for Geoid Determination in a Coastal Region of Eastern Canada, International Service for the Geoid (IGeS), Bulletin no. 12, 2002, pp. 3–17.

10. Wan, X., Hao, R., Jia, Y., Wu, X., Wang, Y., Feng, L., Global marine gravity anomalies from multi-satellite altimeter data, Earth, Planets and Space, 2022, vol. 74, 165, doi: 10.1186/s40623-022-01720-4.

11. Kamto, P.G., Yap, L., Nguiya, S., Kande, L.H., Kamguia, J., Evaluation of latest marine gravity field models derived from satellite altimetry over the Gulf of Guinea (Central Africa) with shipborne gravity data, Stud. Geophys. Geod., 2022, vol. 66, pp. 23–37, doi: 10.1007/s11200-021-0157-y.

12. Михайлов П.С., Конешов В.Н., Соловьев В.Н., Железняк Л.К. Новые результаты оценок современных глобальных ультравысокостепенных моделей гравитационного поля в Мировом океане // Гироскопия и навигация. 2022. Том 30. №4. С. 36–53. DOI: 10.17285/0869-7035.00102.

13. Евстифеев М.И., Краснов А.А., Соколов А.В., Старосельцева И.М., Элинсон Л.С., Железняк Л.К., Конешов В.Н. Гравиметрический датчик нового поколения // Измерительная техника. 2014. № 9. С. 12–15.

14. Соколов А.В., Краснов А.А. Современный комплекс программно-математического обеспечения мобильного гравиметра «Чекан-АМ» // Гироскопия и навигация. 2015. № 2 (89). С. 118–131. DOI: 10.17285/0869-7035.2015.23.2.117-130.

15. Sandwell, D.T., Harper, H., Tozer, B., Smith, W.H.F., Gravity field recovery from geodetic altimeter missions, Advances in Space Reaserch, 2021, vol. 68, issue 2, pp.1059–1072, doi: 10.1126/science.1258213.

16. Yao Yu, Sandwell, D.T., Gille, S.T., Villas Boas, A.B., Assessment of ICESat-2 for the recovery of ocean topography, Geophysical Journal International, 2021, vol. 226, issue 1, pp. 456–467, doi: 10.1016/j.asr.2019.09.011.

17. Balmino, G., Vales, N., Bonvalot, S., Briais, A., Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies, Journal of Geodesy, 2012, no 86, pp. 499–520.

18. Рыжова Д.А., Коснырева М.В., Дубинин Е.П., Булычев А.А. Геолого-геофизическое строение тектоносферы Мозамбикского и Мадагаскарского хребтов // Геофизические исследования. 2021. Т. 22. № 3. С. 53–69. DOI: 10.21455/gr2021.3-4.

19. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., New global marine gravity from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science, 2014, vol. 346, no. 6205, pp. 65–67, doi: 10.1126/science.1258213.


Review

For citations:


Mikhailov P.S. Use of Marine Gravimetric Survey Data for Correcting the Satellite Models of the Global Gravity Field in the World Ocean. Gyroscopy and Navigation. 2023;31(3):66-77. (In Russ.) EDN: RVGALY

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)