Preview

Гироскопия и навигация

Расширенный поиск

Обзор методов инерциальной навигации на основе глубокого обучения для навигации АНПА на больших дистанциях

EDN: XMYLOI

Аннотация

   Инерциальные методы навигации автономных необитаемых подводных аппаратов (АНПА) позволяют обеспечить выполнение ими сложных задач в автоматическом режиме. Разработки в области традиционной инерциальной навигации ведутся в течение многих лет, и существует потребность в новых технических решениях. С помощью метода глубокого обучения можно автоматически выбирать и извлекать ключевые признаки в обрабатываемых данных, что широко применяется для распознавания изображений, речи, обработки текстов и в других областях. Хорошие результаты достигаются при обработке последовательно поступающих данных, например текста и речи. Очевидно, что выходные данные инерциальной навигации относятся к такому же типу информации. Многочисленные исследования показали, что модели на основе глубоких нейронных сетей можно использовать для снижения уровня шума инерциальных датчиков и дрейфа средств инерциальной навигации, а также комплексирования инерциальных данных с данными других датчиков. Кроме того, эти модели позволяют прогнозировать и уменьшать погрешности инерциальной навигации при длительном подводном плавании. В статье приводится обзор методов инерциальной навигации АНПА на основе глубокого обучения, включая новейшие достижения и тенденции развития.

Об авторах

Цинь Юань Хэ
Национальный институт инновационных оборонных технологий, Ака- Доктор наук, Национальный институт инновационных оборонных технологий, Академия военных наук
Китай

Цинь Юань Хэ, доктор наук

Пекин



Хуа Пэн Ю
Национальный институт инновационных оборонных технологий, Академия военных наук
Китай

Хуа Пэн Ю, доктор наук

Пекин



Ю Чэнь Фан
Университет электронных наук и технологий Китая
Китай

Ю Чэнь Фан, доктор наук

факультет автоматизированного проектирования

Чэнду



Список литературы

1. Matos, A. and Cruz, N., Development and implementation of a low-cost LBL navigation system for an AUV, Ocean ’99 MTS/IEEE. Riding the Crest into 21st Century, pp. 774–779.

2. Opderbecke, J.P. and Person, R., POSIDONIA 6000: A new long range highly accurate ultra short base line positioning system, Ocean MTS/IEEE Conference Proceedings, Halifax, 1998, pp. 1721–1727.

3. Thomas, H.G., GIB buoys: An interface between space and depths of the oceans, Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, Cambridge, pp. 181–184.

4. Watanabe, Y. and Ochi, H., A tracking of AUV with integration of SSBL acoustic positioning and transmitted INS data, in Proc. OCEAN EUROPE, Bremen, 2009, pp. 1–6.

5. Toky, A. and Singh, R., Localization schemes for underwater acoustic sensor networks — A review, Comput. Sci. Rev., 2020, pp. 100241–100259.

6. Bresson, G. and Alsayed, Z., Simultaneous localization and mapping: A survey of current trends in autonomous driving, IEEE Trans. Intell., 2017, pp. 194–220.

7. Qin, T. and Li, P., VINS-Mono: A robust and versatile monocular visual-inertial state estimator, IEEE Transactions on Robotics (ITOR) 2018, pp. 1004–1020.

8. Xu, W. and Cai, Y., Fast- LIO2: Fast direct LiDAR-inertial odometry, IEEE Transactions on Robotics, 2022.

9. Feng, D. and Wang, C., Kalman-filter based integration of IMU and UWB for high-accuracy indoor positioning and navigation, IEEE Internet of Things Journal, 2020, pp. 3133–3146.

10. Wagner, J. and Sorg, H.W., The Bohnenberger machine, Gyroscopy Navig., 2010, vol. 1, pp. 73–78.

11. Allotta, B. and Caiti, A., A new AUV navigation system exploiting unscented Kalman filter, Ocean Eng., 2016, pp. 121–132.

12. Farrell, J.A., Aided Navigation Systems: GPS and High Rate Sensors, New York: McGraw-Hill, 2008, pp. 11–12.

13. Petillo, S. and Schmidt, H., Exploiting adaptive and collaborative AUV autonomy for detection and characterization of internal waves, IEEE Journal of Oceanic Engineering Special Issue on Marine Vehicle Autonomy, 2014, pp. 150–164.

14. Jalving, B., DVL velocity aiding in the HUGIN 1000 Integrated Inertial Navigation System, Modeling, Identification and Control, 2004, pp. 223–235.

15. Stutters, L. and Liu, H., Navigation technologies for autonomous underwater vehicles, IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2008, pp. 581–589.

16. Yu, S.-Ch., Ura, T., Fujii, T., and Kondo. H., Navigation of autonomous underwater vehicles based on artificial underwater landmarks, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), Honolulu, 10.1109.

17. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning, Nature, 2015, pp. 436–44.

18. McCulloch, W.S. and Pitts, W., A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, 1943, pp. 115–133.

19. Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychological review, 1958, p. 386.

20. Rumelhart, D.E. and Hinton, G.E., Learning representations by back-propagating errors, Nature, 1986, pp. 533–536.

21. LeCun, Y. and Bottou, L., Gradient-based learning applied to document recognition, Proceedings of the IEEE, 1998, pp. 2278–2324.

22. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M. et al., Generative adversarial networks, Advances in Neural Information Processing Systems, 2014, pp. 2672–2680.

23. Hinton, G.E., Osindero, S., and Teh, Y.-W., A fast learning algorithm for deep belief nets, Neural Computation, 2006, pp. 1527–1554.

24. Sutskever, I., Martens, J., and Hinton, G.E., Generating text with Recurrent Neural Networks, International Conference on Machine Learning (ICML) 2016.

25. Sutskever, I., Hinton, G.E., and Taylor, G.W., The Recurrent Temporal Restricted Boltzmann Machine, in Advances in Neural Information Processing Systems 21, 2008, pp. 1601–1608.

26. Graves, A. and Jaitly, N., Towards end-to-end speech recognition with recurrent neural networks, Proceedings of the 31<sup>st</sup> International Conference on International Conference on Machine Learning, 2014, vol. 32, pp. 1164-1172.

27. Zhou, Y., Wang, M., Liu, D., and Hu, Z., More grounded image captioning by distilling image-text matching model, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

28. Donahue, J, Hendricks, L.A., and Rohrbach, M., Long-term Recurrent Convolutional Networks for visual recognition and description, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, pp. 677–691.

29. Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Computation, 1997, pp. 1735–1780.

30. Goodfellow, I.J. and Pouget-Abadie, J., Generative adversarial nets, in Proceedings of the 27<sup>th</sup> International Conference on Neural Information Processing Systems – Volume 2 (NIPS’14): pp. 2672–2680.

31. Vaswani, A. and Shazeer, N., Attention is all you need, Advances in Neural Information Processing Systems, 2017.

32. Parmar, N., Vaswani, A., Uszkoreit, J. et al., Image transformer, International Conference on Machine Learning (ICML),2018, pp. 4055-4064.

33. Chen, M., Radford, A. and Child, R., Generative pretraining from pixels, International Conference on Machine Learning (ICML), 2020, pp. 1691–1703.

34. Esser, P., Rombach, R., and Ommer, B., Taming transformers for high-resolution image synthesis, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 12873–12883.

35. Chen, C., Lu, X., Markham, A., and Trigoni, N., IONet: Learning to cure the curse of drift in inertial odometry, in The Conference on Artificial Intelligence (AAAI) 2018.

36. Clark, R., Wang, S., Wen, H., Markham, A., and Trigoni, N., VINet: Visual-Inertial Odometry as a sequence-to-sequence learning problem, in The Conference on Artificial Intelligence (AAAI) 2017, pp. 3995– 4001.

37. Lu, S., Liu, J., Guo, J. et al., Neural-network based AUV navigation for fast-changing environments, IEEE Internet of Things Journal, 2020, pp. 9773-9783.

38. Esfahani, M.A., Wang, H., and Wu, K., AbolDeepIO: A novel deep inertial odometry network for autonomous vehicles, IEEE Transactions on Intelligent Transportation Systems, 2020, pp. 1941–1950.

39. Topini, E. et al., LSTM-based dead reckoning navigation for Autonomous Underwater Vehicles, Global Oceans 2020, Singapore – U.S. Gulf Coast, Biloxi, pp. 1-7.

40. Jiang, C. and Chen, S., A MEMS IMU de-noising method using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN), Sensors, 2018.

41. Chen, H., Aggarwal, P., Taha, T.M., and Chodavarapu, V.P., Improving inertial sensor by reducing errors using deep learning methodology, NAECON 2018 – IEEE National Aerospace and Electronics Conference (NAEC).

42. Ma, H., Mu, X., and He, B., Adaptive navigation algorithm with deep learning for Autonomous Underwater Vehicle, Sensors, 2021.

43. Brossard, M., Bonnabel, S., and Barrau, A., Denoising IMU gyroscopes with deep learning for openloop attitude estimation, in IEEE Robotics and Automation Letters, 2020, pp. 4796–4803.

44. Martinelli, A., Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination, in IEEE Transactions on Robotics, 2011, pp. 44–60.

45. Rao, B., Kazemi, E., and Ding, Y., CTIN: Robust Contextual Transformer Network for inertial navigation, Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 5413–5421.

46. Or, B. and Klein, I., ProNet: Adaptive process noise estimation for INS/DVL fusion, 2023 IEEE Underwater Technology (UT), Tokyo, Japan, pp. 1–5.

47. Zhang, X., He, B., Li, G., Mu, X., Zhou, Y. and Mang, T., Navnet: AUV navigation through deep sequential learning, in IEEE Access, 2020, vol. 8, pp. 59845–59861.

48. Carlucho, I., De Paula, M., Wang, S., Menna, B.V., Petillot, Y.R., and Acosta, G.G., AUV position tracking control using end-to-end deep reinforcement learning, OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA , pp. 1–8.

49. Li, D., Xu, J., He, H. and Wu, M., An underwater integrated navigation algorithm to deal with DVL malfunctions based on deep learning, in IEEE Access, 2021, vol. 9.

50. Topini, E., Fanelli, F., and Topini, A., An experimental comparison of Deep Learning strategies for AUV navigation in DVL-denied environments, Ocean Engineering, 2023, vol. 274.

51. Zhu, J., Li, A., Qin, F., Che, H., and Wang, J., A novel hybrid method based on deep learning for an integrated navigation system during DVL signal failure, Electronics, 2022, vol. 11, no. 19, p. 2980.

52. Saksvik, I.B., Alcocer, A., and Hassani, V., A deep learning approach to dead-reckoning navigation for autonomous underwater vehicles with limited sensor payloads, OCEANS 2021, San Diego – Porto, pp. 1–9.

53. Yan, H., Shan, Q., and Furukawa, Y., RIDI: Robust IMU double integration, in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 621–636.

54. Herath, S., Yan, H., and Furukawa, Y., RoNIN: Robust neural inertial navigation in the wild: Benchmark, evaluations, new methods, in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3146–3152


Рецензия

Для цитирования:


Хэ Ц.Ю., Ю Х.П., Фан Ю.Ч. Обзор методов инерциальной навигации на основе глубокого обучения для навигации АНПА на больших дистанциях. Гироскопия и навигация. 2023;31(3):122-135. EDN: XMYLOI

For citation:


He Q.Yu., Yu H.P., Fang Yu.Ch. Deep Learning-Based Inertial Navigation Technology for Autonomous Underwater Vehicle Long-Distance Navigation – A Review. Gyroscopy and Navigation. 2023;31(3):122-135. (In Russ.) EDN: XMYLOI

Просмотров: 24


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)