An Adaptive Attitude Control System for Small Satellites
EDN: KEQWBG
Abstract
The paper describes an approach to designing an attitude control system for small spacecraft (SS), adaptive to possible failures of sensors and actuators. With this aim in view, the system loop includes its digital twin, which is designed to detect failures of measuring equipment using predicted measurement values calculated based on onboard adaptive SS motion models. This approach increases the SS onboard computational burden, but prevents processing of unreliable measurement data in the feedback loop. Compensation for the failure of sensors and actuators is performed by reconfiguring the algorithmic support used to determine the SS attitude. To compensate for failures of actuators’ individual channels, an algorithm for SS attitude control is proposed, the structure of which has the form of even Fourier series.
References
1. Puig-Suari, J., Turner, C., Twiggs, R.J., CubeSat: The Development and Launch Support Infrastructure for Eighteen Different Satellite Customers on One Launch, AIAA/USU Conference on Small Satellites, 2001.
2. Bouwmeester, J. and Guo, J., Survey of worldwide pico- and nanosatellite missions, distributions and subsystem technology, Acta Astronautica, 2010, vol. 67, pp. 854–862.
3. Selva, D., Krejci, D., A survey and assessment of the capabilities of Cubesats for Earth observation, Acta Astronautica, 2012, vol. 74, pp. 50–68.
4. Nanosats Database. [Электронный ресурс]. URL: https://www.nanosats.eu/ (дата обращения 27.03.2025).
5. Ivanov, D., Attitude motion and sensor bias estimation onboard the SiriusSat-1 nanosatellite using magnetometer only, Acta Astronautica, 2021, vol. 188, pp. 295–307, https://doi.org/10.1016/j.actaastro.2021.07.038.
6. Carletta, S., Teofilatto, P., and Farissi, M.S., A magnetometer only attitude determination strategy for small satellites: Design of the algorithm and hardware-in the loop testing, MDPI Aerospace, 2020, vol. 7, no. 1, https://doi.org/10.3390/aerospace7010003.
7. Ivanov, D., Ovchinnikov, M., Ivlev, N., and Karpenko, S., Analytical study of microsatellite attitude determination algorithms, Acta Astronautica, 2015, vol. 116, pp. 339–348, https://doi.org/10.1016/j.actaastro.2015.07.001.
8. Markley, F.L., Crassidis, J.L., Fundamentals of Spacecraft Attitude Determination and Control, Springer, 2014.
9. Yang, Y., Spacecraft modeling, attitude determination, and control: quaternion-based approach, Rockville, Maryland, USA: CRC Press, 2019.
10. Tkachev, S., Mashtakov, Y., Ivanov, D. Roldugin, D., Ovchinnikov, M., Effect of Reaction Wheel Imbalances on Attitude and Stabilization Accuracy, Aerospace, 2021, 8, 252, https://doi.org/10.3390/aerospace8090252.
11. Roldugin, D., Okhitina, A., Monakhova, U., Ovchinnikov, M., Comparison of Feedback Three-Axis Magnetic Attitude Control Strategies, Aerospace, 2023, 10, 975. https://doi.org/10.3390/aerospace10120975.
12. Saleh, J.H., Castet, J.-F., Spacecraft Reliability and Multi-state Failures a Statistical Approach John, Wiley & Sons, 2011, 224.
13. Tafazoli, M., A study of on-orbit spacecraft failures, Acta Astronautica, 2009, 64 (2–3), pp. 195–205, doi: 10.1016/j.actaastro.2008.07.019.
14. Wayer, J.K. Castet, J.-F. and Saleh, J.H., Spacecraft attitude control subsystem: Reliability, multistate analyses, and comparative failure behavior in LEO and GEO, Acta Astronautica, 2013, vol. 85, pp. 83–92, doi: 10.1016/j.actaastro.2012.12.003.
15. Yin, S., Xiao, B., Ding, S. X. and Zhou, D., A Review on Recent Development of Spacecraft Attitude Fault Tolerant Control System, IEEE Transactions on Industrial Electronics, 2016, vol. 63, no. 5, pp. 3311–3320, doi: 10.1109/TIE.2016.2530789.
16. Tudoroiu, N., Khorasani, K., Satellite fault diagnosis using a bank of interacting Kalman filters, IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, pp. 1334–1350, doi: 10.1109/TAES.2007.4441743.
17. Pirmoradi, F.N., Sassani, F., and de Silva, C.W., Fault detection and diagnosis in a spacecraft attitude determination system, Acta Astronautica, 2009, vol. 65, pp. 710–729, doi: 10.1016/j.actaastro.2009.03.002.
18. Henry, D., Fault diagnosis of microscope satellite thrusters using H-infinity/H- filters, Journal of Guidance, Control, and Dynamics, 2008., vol. 31, pp. 699–711, doi: 10.2514/1.31003.
19. Gao, Z.F., Jiang, B., Shi, P. and Cheng, Y. H., Sensor fault estimation and compensation for microsatellite attitude control systems, International Journal of Control Automation and Systems, 2010, vol. 8, pp. 228–237, DOI: 10.1080/00207721.2010.517867.
20. Gao, C. Y., Zhao, Q., Duan, G. R., Robust actuator fault diagnosis scheme for satellite attitude control systems, Journal of the Franklin Institute, 2013 vol. 350, pp. 2560–2580, doi: 10.1016/j.jfranklin.2013.02.021.
21. Zhang, J., Swain, A. K., Nguang, S. K., Robust sensor fault estimation scheme for satellite attitude control systems, Journal of the Franklin Institute, 2013, vol. 350, pp. 2581–2604, doi: 10.1016/j.jfranklin.2013.06.010.
22. Pukdeboon, C., Zinober, A. S. I., Thein, M. W. L., Quasi-continuous higher order sliding-mode controllers for spacecraft attitude tracking maneuvers, IEEE Transactions on Industrial Electronics, 2010, vol. 57, pp. 1436–1444, doi: 10.1109/TIE.2009.2030215.
23. Zhao, S.L., Zhang, Y.C., SVM classifier based fault diagnosis of the satellite attitude control system, 2008 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 2008, pp. 907–911.
24. Li, Z., Ma, L., Khorasani, K., A dynamic neural network-based reaction wheel fault diagnosis for satellites, International Joint Conference on Neural Networks, Vancouver, BC, Canada, 2006, pp. 3714–3721.
25. Williamson, W.R., Speyer, J.L., Dang, V.T., and Sharp, J., Fault Detection and Isolation for Deep Space Satellites, AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, USA, 2008, pp. 1570–1584.
26. Li, Z.Z., Liu, G.H., Zhang, R. and Zhu, Z.C., Fault detection, identification and reconstruction for gyroscope in satellite based on independent component analysis, Acta Astronautica, 2011, vol. 68, pp. 1015–1023, DOI: 10.1016/j.actaastro.2010.09.010.
27. Hu, D., Sarosh, A. and Dong, Y.F., A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels, ISA Transactions, 2012, vol. 51, pp. 309–316, doi: 10.1016/j.isatra.2011.10.005.
28. Hu, Q., Shi, Y., Shao, X., Adaptive fault-tolerant attitude control for satellite reorientation under input saturation, Aerospace Science and Technology, 2018, vol. 78, pp. 171–182. https://doi.org/10.1016/j.ast.2018.04.015.
29. Nasir, A., Atkins, E.M., Fault tolerance for spacecraft attitude management, AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010.
30. Kruk, J.W., Class, B.F., Rovner, D., Westphal, J., Ake, T.B., Moos, H.W., Roberts, B., and Fisher, L., FUSE in-orbit attitude control with two reaction wheels and no gyroscopes, The Conference on Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation, Bellingham, 2003.
31. Sweeting, M.N., Hashida, Y., Bean, N.P., Hodgart, M.S. and Steyn, H., CERISE microsatellite recovery from first detected collision in low Earth orbit, Acta Astronautica, 2004, vol. 55, pp. 139–147, doi: 10.1016/S0094-5765(03)00062-6.
32. ГОСТ Р 57700.37–2021. Компьютерные модели и моделирование. Цифровые двойники изделий. Общие положения.
33. Крылов В.И. Основы теории движения ИСЗ (часть вторая: возмущенное движение): учебное пособие. М.: МИИГАиК, 2016. 67 с.
34. Белоконов И.В., Тимбай И.А., Николаев П.Н. Анализ и синтез движения аэродинамически стабилизированных космических аппаратов нанокласса формата CubeSat // Гироскопия и навигация. 2018. Т. 26. № 3 (102). С. 69–91. DOI 10.17285/0869-7035.2018.26.3.069-091.
35. Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C., NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, Journal of Geophysical Research Atmospheres, 2002, 107 (A12), doi:10.1029/2002JA009430.
36. Sinpetru, L.A., Crisp, N.H., Mostaza-Prieto, D., Livadiotti, S., Roberts, P.C.E., ADBSat: Methodology of a novel panel method tool for aerodynamic analysis of satellites, Preprint submitted to Computer Physics Communications, 2021, https://doi.org/10.1016/j.cpc.2022.108326.
37. Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
38. Николаев П.Н., Эспиноза В.А.С., Щербаков М.С., Соболев Д.Д. Калибровка бортовых магнитометрических датчиков системы ориентации университетского наноспутника SamSat-ION // Гироскопия и навигация. 2023. Т. 31. №3 (122). C. 109–121. EDN: WUENOL.
39. Syed, Z.F., Aggarwal, P., Goodall, C., Niu, X., El-Sheimy, N., A new multi-position calibration method for MEMS inertial navigation systems, Measurement Science and Technology, 2007 May 15; 18(7):1897, doi 10.1088/0957-0233/18/7/016.
40. Hajiyev, C., Soken, H.E., Fault Tolerant Attitude Estimation for Small Satellites (1st ed.), CRC Press, 2020, https://doi.org/10.1201/9781351248839.
41. Zheng, T., Zheng, F., Rui, X., Ji, X., A Precise Algorithm for Computing Sun Position on a Satellite, Journal Aerospace Technology and Management, 2019, vol. 11, doi: 10.5028/jatm.v11.1048.
42. Hajiyev, C., Orbital Calibration of Microsatellite Magnetometers Using a Linear Kalman Filter, Measurement Techniques, 2015, 58, 1037–1043, https://doi.org/10.1007/s11018-015-0838-4.
43. Soken, H.E., Hajiyev, C., UKF based in-flight calibration of magnetometers and rate gyros for pico satellite attitude determination, Asian Journal of Control, 2012, 14, no. 3, 707–715, doi: 10.1002/asjc.368.
44. Belokonov, I.V., Lomaka, I.A., In-flight calibration of nanosatellites inertia tensor: The algorithm and requirements for on-board sensors, Proceedings of the International Astronautical Congress, IAC, 2018.
45. Крамлих А.В., Николаев П.Н., Рылько Д.В. Бортовой двухэтапный алгоритм определения ориентации наноспутника SamSat-ION // Гироскопия и навигация. 2023. Т. 31. №2 (121). C. 65–85. EDN: FBUMKZ.
46. Cilden-Guler, D., Hajiyev, C., SVD-Aided EKF for Nanosatellite Attitude Estimation Based on Kinematic and Dynamic Relations, Gyroscopy and Navigation, 2023, vol. 14, pp. 366–379.
47. Searcy, J.D., Pernicka, H.J., Magnetometer-Only Attitude Determination Using Novel Two-Step Kalman Filter Approach, Journal of Guidance Control and Dynamics, 2012, vol. 35, pp. 1639–1701.
48. Белоконов И.В., Крамлих А.В. Методика восстановления ориентации космического аппарата при комплексировании магнитометрических и радионавигационных измерений // Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королёва. 2007. №1 (12). С. 22–30.
49. Belokonov, I.V., Kramlikh, A.V., Lomaka, I.A., Nikolaev, P.N., Reconstruction of a Spacecraft’s Attitude Motion Using the Data on the Current Collected from Solar Panels, Journal of Computer and Systems Sciences International, 2019, vol. 58, issue 2, pp. 286–296.
50. Belokonov, I.V., Lomaka, I.A., Postflight Recovery of the Rotational Motion of a Small Space Vehicle from Solar Sensor Information, Journal of Computer and Systems Sciences International, 2023, vol. 62, issue 2, pp. 214–224.
51. Elisov, N.A., Kramlikh, A.V., Lomaka, I.A., Avariaskin, D.P., An attitude control by the functional series in the problem of nanosatellite reorientation, Aerospace Science and Technology, 2023, vol. 132, doi: 10.1016/j.ast.2022.108038.
52. Елисов Н.А., Крамлих А.В., Ломака И.А. Синтез номинальных траекторий переориентаций малоразмерного космического аппарата при отказе одного канала управления // Мехатроника, автоматизация, управление. 2023. №24 (11). С. 608–615. https://doi.org/10.17587/mau.24.608-615.
53. Storn, R., Price, K., Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 1997, no. 11, pp. 341–359.
54. Hall, D., Spacecraft Attitude Dynamics and Control, Virginia Polytechnic Institute and State University: Blacksburg, 2003.
Review
For citations:
Kramlikh A.V. An Adaptive Attitude Control System for Small Satellites. Gyroscopy and Navigation. 2025;33(1):106-124. (In Russ.) EDN: KEQWBG