Preview

Gyroscopy and Navigation

Advanced search

Simulating the Effect of Quartz Sensor Thermal Deformation on Q-Flex Accelerometer Zero Shift

https://doi.org/10.17285/0869-7035.0085

Abstract

In the paper, simulation is used to study the thermal deformation of Q-flex accelerometer quartz sensitive element (SE) with technological geometrical deviations of elastic beams with conductors within the operation temperature range. It has been shown that the largest bending moment in the SE appears when conductors from the front and back sides of elastic beam have different thickness and width. A method for static thermal tests simulation has been developed, which allows estimation of accelerometer zero shift with account for the geometrical imperfections of SE elastic beams. It has been revealed that the thermal hysteresis and non-repeatability of accelerometer zero shift are due to the plastic strain of conductors under near-boundary temperature loads. A SE modification with loose conductors has been developed, which, according to the simulation results, improves the thermal coefficient, hysteresis, and repeatability of zero shift. 

About the Authors

E. S. Barbin
Tomsk State University of Control Systems and Radioelectronics; Zuev Institute of Atmospheric Optics of Russian Academy of Sciences
Russian Federation

Tomsk



D. V. Kozlov
Russian Space Systems
Russian Federation

Moscow



S. F. Konovalov
Bauman Moscow State Technical University
Russian Federation


Yu. A. Ponomarev
Bauman Moscow State Technical University
Russian Federation


M. S. Kharlamov
Russian Space Systems
Russian Federation


References

1. Pat. US3702073 (A), G01P15/13, Accelerometer / Earl D. Jacobs; Sundstrand Data Control Inc. 07.11.1972, p. 8/

2. Jing-Min Gao et al., Temperature characteristics and error compensation for quartz flexible accelerometer, International Journal of Automation and Computing, 2015, 12(5), 540–550, doi: 10.1007/s11633015-0899-5.

3. Минкин А.М. Технологические основы формообразования чувствительного элемента из кварцевого стекла методом химического травления через текстурированное молибденовое покрытие: дис. … канд. техн. наук: Пермский национальный исследовательский политехнический университет. Пермь, 2020. 116 с.

4. Weibin Yang et al., A temperature compensation model for low cost quartz accelerometer and its application in tilt sensing, Mathematical problems and engineering, volume 2016, article ID 2950376, 10 p., http://dx.doi.org/10.1155/2016/2950376.

5. Birleanu, C. et al., Temperature effect on the mechanical properties of gold nano films with different thickness, IOP Conf. Series: Materials Science and Engineering, 2016, 147, 012021, doi:10.1088/1757899X/147/1/012021.

6. Hodge, Th.C. et al., Stress in thin film metallization, IEEE transactions on components, packaging and manufacturing technology – part A, 1997, vol. 20, no. 2, pp. 241–250.

7. Nastaran Ghazi Esfahani. Investigation of plastic strain recovery and creep in thin film nanocrystalline metals, Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia university, 2014, 119 p.

8. Chang-Wook Beak et al., Mechanical characterization of gold thin films based on strip bending and nanoindentation test for MEMS/NEMS application, Sensors and Materials, 2005, vol. 17, no. 5, pp. 277– 288.

9. Pamato, M.G. et al., The thermal expansion of gold: point defect concentrations and pre-melting in face-centered cubic metal, J. Appl. Cryst., 2018, 51, 470–480, doi: 10.1107/S1600576718002248.

10. Schmelzer, J.W.P., Glass: selected properties and crystallization, Berlin, 2014. 588 p.

11. Денисов С.Ю., Акилин В.И. Технологические методы повышения точностных характеристик кварцевых акселерометров // Навигация и управление летательными аппаратами. 2016. №15. С. 17–31.

12. Pat. US4400979 (A), G01L1/00; G01L1/14; G01L1/26; G01P15/13, Force transducer flexure with conductors on surfaces in the neutral bending plane / Hanson Richard A., Atherton Kim W.; Sundstrand Data Control Inc. 30.08.1983, p. 8.

13. Пат. RU2731652 (C1), G01P15/135. Маятниковый компенсационный акселерометр / С.Ф. Коновалов, Д.В. Майоров, Ю.А. Пономарёв, В.Е. Чулков, А.Е. Семёнов, М.С. Харламов; Коновалов С.Ф. № RU20190107343; заявл. 15.03.2019; опубл. 07.09.2020, Бюл № 25. 27 с.

14. Коновалов С.Ф., Майоров Д.В., Семёнов А.Е., Пономарёв Ю.А., Чулков В.Е., Малыхин А.А., Харламов М.С., Малыхин Д.А. Температурный дрейф и нестабильность нулевого сигнала маятниковых компенсационных Q-flex акселерометров // XXVII Санкт-Петербургская международная конференция по интегрированным навигационным системам. 2020. С. 237–243.

15. Бом С. Дж. Оптимизация параметров и моделирование рабочих режимов в компенсационных акселерометрах типа Q-flex и Si-flex: дис. … канд. техн. наук. Москва, 2012. 239 с.

16. Лучкин А.Г. Температурный режим нанесения тонкопленочных покрытий на полимеры методом магнетронного распыления // Вестник Казанского технологического университета. 2011. №16. С. 121–125.


Review

For citations:


Barbin E.S., Kozlov D.V., Konovalov S.F., Ponomarev Yu.A., Kharlamov M.S. Simulating the Effect of Quartz Sensor Thermal Deformation on Q-Flex Accelerometer Zero Shift. Gyroscopy and Navigation. 2022;30(1):61-72. https://doi.org/10.17285/0869-7035.0085

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)