Preview

Gyroscopy and Navigation

Advanced search

Studying the Сonsistency of Extended Kalman Filter in Pedestrian Navigation with Foot-Mounted SINS.

https://doi.org/10.17285/0869-7035.0063

Abstract

The paper focuses on pedestrian navigation with foot-mounted strapdown inertial navigation systems (SINS). Zero velocity updates (ZUPT) during the stance phase are commonly applied in such systems to improve the accuracy. Zero velocity data are processed by the extended Kalman filter (EKF). Zero velocity condition is written in two forms: in reference and body frames. The first form traditional for pedestrian navigation is shown to provide an inconsistent EKF. The second form provides a correct ZUPT algorithm, which is naturally written in so-called dynamic errors. The analyzed algorithm for data fusion from two SINS is based on the bound on foot-to-foot distance. It is shown how EKF inconsistency can be manifested, and how it can be avoided by proceeding back to dynamic errors. The results are obtained analytically using observability theory and covariance analysis.

About the Authors

Yu. V. Bolotin
Lomonosov Moscow State University, Moscow, Russia
Russian Federation

Bolotin, Yu.V.



A. V. Bragin
Lomonosov Moscow State University, Moscow, Russia
Russian Federation

Bragin, A.V.



D. V. Gulevskii
Lomonosov Moscow State University, Moscow, Russia
Russian Federation


References

1. Bancroft, J., Lachapelle, G., Cannon, M., Petovello, M., Twin IMU–HSGPS Integration for Pedestrian Navigation, Proceedings of ION GNSS, 2008, pp. 1377–1387.

2. Nilsson, J.-O., et al., Foot-mounted INS for everybody – An open–source embedded implementation, Proceedings of IEEE/ION PLANS, 2012, pp. 140–145.

3. Skog, I. et al., Zero-velocity detection – an algorithm evaluation, IEEE Trans. Bio-Med. Eng, 2010, vol. 57, no. 11, pp. 2657–2666.

4. Bolotin, Yu., Fatehrad, M., Pedestrian inertial navigation with foot zero velocity update, 22nd Saint Petersburg International Conference on Integrated Navigation Systems, 2015, pp. 68–72.

5. Yuan, X., Yu, S., Zhang, S., Wang. G., Liu, S., Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system, Sensors, 2015, 15(5), pp.10872–10890.

6. Wang, Y., Chernyshoff, A., Skel, A., Error analysis of ZUPT-aided pedestrian inertial navigation, Proceedings of IPIN, 2018, pp. 24–27.

7. Ван Ю., Цзю Ч., Шкель А. Пешеходная инерциальная навигация с коррекцией по нулевой скорости и комплексированием датчиков // Гироскопия и навигация, 2021. Том 29. № 1 (112). С. 3–31.

8. Zachariah, D., Skog, I., Jansson, M., Handel, P., Bayesian estimation with distance bounds, IEEE Signal Processing Letters, 2012, vol. 19, no. 12, pp. 880–883.

9. Skog, I., Nilsson, J., Zachariah, D., Handel, P., Fusing the information from two navigation systems using an upper bound on their maximum spatial separation, Proceedings of IPIN, 2012, pp. 1–5.

10. Skog, I., Nilsson, J.O., Handel, P., Nehorai, A., Inertial Sensor Arrays, Maximum Likelihood, and Cramer–Rao Bound, IEEE Trans. Signal Processing, 2016, vol. 64, no. 16, pp. 4218–4227.

11. Bar–Shalom, Y., Li, X., Kirubarajan, T., Estimation with applications to tracking and navigation, New Yourk, Wiley–Interscience, 2001, 581 p.

12. Huang, G., Kaess, M., Leonard, J., Towards consistent visual-inertial navigation, IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 4926–4933.

13. Hartley, R., Ghaffari, M., Eystice, I., Grizzle, J., Contakt-aided invariant extended Kalman filtering for robot state estimation, The international Journal of Robotics Research, 2020, vol. 39, no.4, pp. 402–430.

14. Zhang, T., Wu, K., Song, J., Huang, S., Dissanayake, G., Convergence and Consistency Analysis for a 3-D Invariant-EKF SLAM, IEEE Robotics and Automation Letters, 2017, vol. 2, no. 2, pp. 733–740.

15. Barrau, A., Bonnabel, S., Invariant Kalman Filtering, Annu. Rev. Control Robot. Auton. Syst., 2018, 1:5.1–5.21

16. Андреев В.Д. Теория инерциальной навигации. Корректируемые системы. Москва: Наука, 1967. 647 с.

17. Парусников Н.А., Морозов В.М., Борзов В.И. Задача коррекции в инерциальной навигации. М: Издательство Московского университета, 1982. 176 с.

18. Голован А.А., Вавилова Н.Б., Парусников Н.А. Математические основы инерциальных навигационных систем. М: Издательство Московского университета, 2020. 164 с.

19. Scherzinger, B., Reid, D., Modified strapdown inertial navigator error models, Proceedings of IEEE PLANS, 1994, pp. 426–430.

20. Bolotin, Yu.V., Bragin, A.V., Gartzeev, I.B., Covariance error analysis for pedestrian dead reckoning with foot mounted IMU, Proceedings of IPIN, 2019, pp. 243–250.

21. Емельянцев Г.И., Степанов А.П. Интегрированные инерциально-спутниковые системы ориентации и навигации. Санкт-Петербург: АО «Концерн «ЦНИИ «Электроприбор», 2016. 394 с.

22. Nilsson, J., Zahariah, D., Skog, I., Handel, P., Cooperative localization by dual foot mounted inertial sensors and inter–agent ranging, EURASIP Journal on Advances in Signal Processing, 2013, vol. 2013, no.164, pp. 1–17.


Review

For citations:


Bolotin Yu.V., Bragin A.V., Gulevskii D.V. Studying the Сonsistency of Extended Kalman Filter in Pedestrian Navigation with Foot-Mounted SINS. Gyroscopy and Navigation. 2021;29(2):59-77. (In Russ.) https://doi.org/10.17285/0869-7035.0063

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)