Preview

Giroskopiya i Navigatsiya

Advanced search

Interplanetary Small-Satellite Missions: Ballistic Problems and Their Solutions

https://doi.org/10.17285/0869-7035.0077

Abstract

The past decade has been marked by an explosive growth in the number of missions with the use of small spacecraft weighing only about tens of kilograms, including CubeSats that are currently widely employed in various applications. For a scientific paper, it is no longer feasible to enumerate and properly analyze the accomplished missions as well as those under development and being planned: information changes so quickly that perhaps only websites with inline renovations can keep track of all the changes in this market. Near-Earth missions of CubeSats increasingly become the prerogative of engineers and production managers. Nowadays, even factories are built to mass-produce small spacecraft. However, interplanetary small-spacecraft missions stand apart because the technologies used to develop large spacecraft for interplanetary missions are not fully applicable to small spacecraft. The same is true of the bal-listic aspects of such missions. This is primarily due to the low energy capability of small spacecraft for maneuvering and transmitting signals over long distanc-es. The other equally important aspects are their self-sufficiency, navigation support, and radiation resistance in outer space. From the standpoint of the sci-entific novelty of the problems that spacecraft have to face and the fundamen-tals of ballistic implementation, it is interplanetary missions that attract atten-tion of researchers. This paper discusses the opportunities for interplanetary transportation of small spacecraft and formulates the problems that need to be solved in the near future.

About the Author

M. Yu Ovchinnikov
Keldysh Institute of Applied Mathematics, Moscow, Russia
Russian Federation


References

1. https://en.wikipedia.org/wiki/CubeSat (обращение 01.10.2021).

2. https://www.busek.com/rf-ion-thrusters (обращение 01.10.2021).

3. https://www.nasa.gov/artemis-1 (обращение 01.10.2021).

4. https://www.jpl.nasa.gov/cubesat/missions/marco.php (обращение 01.10.2021).

5. Walker, R., Walker, R., Binns, D., Bramanti, C., Casasco, M., Concari, P., Izzo, D., Feili, D., Fernandez, P., Fernandez, J.G., Hager, Ph., Koschny, D., Pesquita, V., Wallace, N., Carnelli, I., Khan, M., Scoubeau, M., Taubert, D., Deep-space CubeSats:thinking inside the box, Astronomy & Geophysics, 2018, vol. 59, issue 5, pp. 5.24–5.30, https://doi.org/10.1093/astrogeo/aty232.

6. https://en.wikipedia.org/wiki/List_of_missions_to_the_Moon (обращение 01.10.2021).

7. Cheetham, B., Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE), https://arc.aiaa.org/doi/10.2514/6.2020-4140.

8. Trofimov, S., Shirobokov, M., Tselousova, A., Ovchinnikov, M., Transfers from near-rectilinear halo orbits to low-perilune orbits and the Moon’s surface, Acta Astronautica, 2020, vol. 167, pp. 260–271, https://doi.org/10.1016/j.actaastro.2019.10.049.

9. Parker, J., Cheetham, B., Gardner, T., Forsman, A., Kayser, E., Keynote: CAPSTONE: Pathfinder for the Lunar Gateaway, 72nd International Astronautical Congress (IAC), 2021, Dubai, United Arab Emirates, IAC-21-B4.3.1, 7 p.

10. https://en.wikipedia.org/wiki/ZhengHe_(spacecraft) (обращение 01.10.2021).

11. Creech, S.D., NASA’s Space Launch System: Launch Capability for Lunar Exploration and Transformative Science, IEEEXplore, 21 August 2020, DOI: 10.1109/AERO47225.2020.9172508.

12. Racca, G.D., Marini, A., Stagnaro, L., van Dooren, J., di Napoli, L., Foing, B.H., Volp, J., Brinkmann, J., Grünagel, R., Estublier, D., Tremolizzo, E., McKay, M., Camino, O., Schoemaekers, J., Hechler, M., Khan, M., Rathsman, P., Andersson, G., Anflo, K., Berge, S., Bodin, P., Edfors, A., Hussain, A., Kugelberg, J., Larsson, N., Ljung, B., Meijer, L., Mörtsell, A., Nordebäck, T., Persson, S., Sjöberg, F., SMART-1 Mission Description and Development Status, Planetary and Space Science, 2002, vol. 50, pp. 1323–1337.

13. Ovchinnikov, M., Shirobokov, M., Trofimov S., Barabash, S., Atterwall, P.-E., Low-thrust microspacecraft delivery to a lunar orbit after the launch to GTO or MEO, 71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12–14 October 2020, IAC-20-C1.4.13, 8 p.

14. Kakoi, M., Howell, K.C., Folta, D., Access to Mars from Earth-Moon libration point orbits: Manifolds and direct options, Acta Astronautica, 2014, vol. 102, pp. 269–286. DOI: 10.1016/j.actaastrp.2014.06.010.

15. Graziani, F., Sparvieri, N., Carletta, S., A low-cost Earth-Moon-Mars mission using a microsatellite platform, 71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12–14 October 2020, IAC-20-C1.4.16, 9 p.

16. Malphrus, B., Freeman, A., Staehle, R., Klesh, A., Walker, R., Interplanetary Cubesat missions, CubeSat Handbook. From Mission Design to Operations, 1st Edition, Editors: Ch. Cappelletti, S. Battistini, B. Malphrus, Academic Press, 2020, pp. 85–121.

17. Келдыш М.В., Ершов В.Г., Охоцимский Д.Е., Энеев Т.М. Теоретические исследования по ди- намике полета к Марсу и Венере // Келдыш М.В. Избранные труды. Ракетная техника и космонав- тика. М.: Наука, 1988, С. 243–261.

18. Платонов А.К. О построении движений в баллистике и мехатронике // Прикладная небесная механика и управление движением. Сборник статей, посвященный 90-летию со дня рождения Д.Е.Охоцимского / Составители: Т.М. Энеев, М.Ю. Овчинников, А.Р. Голиков. М.: ИПМ им. М.В. Келдыша, 2010. С. 127–222. https://keldysh.ru/memory/okhotsimsky/platonov.pdf.

19. Space Launch System (SLS), Block 1B Secondary Payloads: ESPA-Type and 27U Cubesat Potential Accommodations, White Paper, April 12, 2019, https://ntrs.nasa.gov/citations/20190020091.

20. SLS Mission Planner’s Guide, December 19, 2018, https://ntrs.nasa.gov/citations/20170005323 (обращение 01.10.2021).

21. Shirobokov, M., Trofimov, S., Parametric Analysis of Low-Thrust Lunar Transfers with Resonant Encounters, Advances in the Astronautical Sciences, 2016, vol. 158, pp. 579–603.

22. Левантовский В.И. Механика космического полета в элементарном изложении. 3-е изд., дополн. и переработ. М.: Наука. Главн. ред. физ.-мат. лит-ры, 1980. 512 с.

23. Oberth, H., Wege zur Raumschiffahrt, R. Oldenbourg Verlag, Munich-Berlin, 1929.

24. https://www.hou.usra.edu/meetings/V2050/pdf/8203.pdf (обращение 01.10.2021).

25. Belbruno, E., The Dynamical Mechanism of Ballistic Lunar Capture Transfers in the Four-Body Problem from the Perspective of Invariant Manifolds and Hill’s Regions, Centre de Recerca Matematica, Preprint, 1994, 24 p.

26. Malphrus, B., Zhirkina, P., Brown, K., Folta, D., Brambora, C., Hurford, T., Grubbm, M., Tsay, M., Clark, P., The lunar IceCube EM-1 mission: Prospecting the Moon for water ice, IEEE Aerospace and Electronic Systems Magazine, 2019, vol. 34, issue, pp. 6–14, doi: 10.1109/MAES.2019.2909384.

27. Folta, D.C., Bosanac, N., Cox, A., Howell, K.C., The lunar IceCube mission design: construction of feasible transfer trajectories with a constrained departure, 26th AAS/AIAA Space Flight Mechanics Meeting, February 2016, AAS AAS 16-285, 19 p.

28. Conley, C.C., Low energy transit orbits in the restricted three-body problem, SIAM J. Appl. Math., 1968, vol. 16, issue 4, pp. 732–746.

29. Lo, M., Williams, B., Bollman, W., Han, D., Hahn, Y., Bell, J., Hirst, E., Corwin, R., Hong, P., Howell, K., Barden, B., Wilson, R., GENESIS mission design, Journal of the Astronautical Sciences, 2001, vol. 49, no.1, pp. 169–184.

30. Lo, M.W., The Interplanetary Superhighway and the Origins Program, IEEE Aerospace Conference, March 2002, Big Sky, MT, USA.

31. Kakoi, M., Howell, K., Folta, D., Access to Mars from Earth-Moon Libration Point Orbits: Manifold and Direct Options, Acta Astronautica, 2014, vol. 102, pp. 269–286, https://dx.doi.org/10.1016/j.actaastro. 2014.06.010.

32. Ciaglia, S., Benigno, N.R., El Hariry, M., Tricarico, P., Marchese, V., Battezzati, N., Simonetti, S., A Validation and Calibration Methodology for Autonomous Navigation of Small Satellites, 72nd International Astronautical Congress (IAC), 24-29 October, 2021, Dubai, United Arab Emirates, IAC- 21-B4.8.3, 7 p. 33. Segret, B., Vannitsen, J., Agnan, M., Porquet, A., Sleimi, O., Deleflied, F., Miaub, J.-J., Juang, J.-Ch., Wang, K., BIRDY: an interplanetary CubeSat to collect radiation data on the way to Mars and back to prepare the future manned missions, Proceedings, 2014, vol. 9150, Modeling, Systems Engineering, and Project Management for Astronomy VI; 91501N, doi: 10.1117/12.2056114. 34. Segret, B., Mosser, B., Autonomous Orbit Determination for a CubeSat Cruising in Deep Space, arXiv: 2104.09989v1 [astro-ph.IM] 20 Apr 2021, 18 p.


Review

For citations:


Ovchinnikov M.Yu. Interplanetary Small-Satellite Missions: Ballistic Problems and Their Solutions. Giroskopiya i Navigatsiya. 2021;29(4):3-21. (In Russ.) https://doi.org/10.17285/0869-7035.0077

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)