Preview

Giroskopiya i Navigatsiya

Advanced search

Thermal Zero Drifts in Magneto-Optical Zeeman Laser Gyroscopes

https://doi.org/10.17285/0869-7035.0079

Abstract

The paper is devoted to the current problem of gyroscopy in general and its magneto-optical laser branch in particular: further increase in the accuracy of gyroscopes while maintaining their stable operation in real operating conditions. The problem is considered and studied by the example of the magneto-optical Zeeman laser gyroscope, which is one of the effective types of laser gyroscope. The development and improvement of the technology for creating this type of gyroscopes makes it possible to significantly re-duce the sources of the gyroscope zero drift and yet, retain the other properties and performance parameters. The study and validation of the possibility of a significant reduction in the gyroscope key control currents, such as the pumping currents of the active medium and the control currents of frequency bias, will increase the measuring accuracy of the gyroscope, and, accordingly, the accuracy of navigation systems based on them.

About the Authors

A. O. Sinel’nikov
M.F. Stelmakh POLYUS Research and Development Institute, Moscow, Russia
Russian Federation


A. A. Medvedev
M.F. Stelmakh POLYUS Research and Development Institute, Moscow, Russia
Russian Federation


Yu. D. Golyaev
M.F. Stelmakh POLYUS Research and Development Institute, Moscow, Russia
Russian Federation


M. E. Grushin
M.F. Stelmakh POLYUS Research and Development Institute, Moscow, Russia
Russian Federation


D. I. Chekalov
M.F. Stelmakh POLYUS Research and Development Institute, Moscow, Russia
Russian Federation


References

1. Гончаров В.М., Зайцев А.В., Лупанчук В.Ю. Совершенствование методов координатометрии беспилотного летательного аппарата в условиях аномальности (искажения) спутниковых сигна-лов // Вестник Московского авиационного института. 2020. Т. 27. №4. С. 206–221. DOI: 10.34759/ vst-2020-4-206-221.

2. Погосян М.А., Верейкин А.А. Управление положением и движением летательных аппаратов в системах автоматической посадки: Аналитический обзор // Вестник Московского авиационного института. 2020. Т. 27. № 3. С. 7–22. DOI: 10.34759/vst-2020-3-7-22.

3. Матвеев В.В., Распопов В.Я. Основы построения бесплатформенных инерциальных навигационных систем. СПб.: ГНЦ РФ ОАО «Концерн «ЦНИИ «Электроприбор», 2009. 280 с.

4. Баженов Н.Г., Филина О.А., Озерова Е.Ю. Использование одноосного гиростабилизатора для системы гироскопической стабилизации в автономных системах управления // Вестник Московского авиационного института. 2018. Т. 25. №4. С. 202.

5. Gibson, C., Flueckiger, K., Hopkins, R., Barbour, N., Demonstrating practical inertial navigation: The beginnings and beyond, AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.

6. Lukyanov, D., Filatov, Yu., Golyaev, Yu., Schreiber, K.-U., Perlmutter, M. 50th anniversary of the laser gyro, 20th Saint Petersburg International Conference on Integrated Navigation Systems, Proceedings, 2013, pp. 36–49.

7. Aronowitz, F., The laser gyro-tutorial review, Proceedings of SPIE – The International Society for Optical Engineering, 1978, 157, pp. 2–6.

8. Barbour, N., Schmidt, G., Inertial sensor technology trends, Sensors, 2001, 1(4), pp. 332–339.

9. Merzlikin, A.M., Puzko, R.S., Mode locking suppression in a magneto-optical gyro, Scientific Reports, 2020, 10(1), 19490.

10. Jie Zheng, Xinyong Dong, Peng Zu, Junhua Ji, Haibin Su, and Perry Ping Shum, Intensity-modulated magnetic field sensor based on magnetic fluid and optical fiber gratings, Applied Physics Letters, 2013, vol. 103, issue 18, id. 183511 (4 pages).

11. Peng Zu, Chi Chiu Chan, Tianxun Gong, Yongxing Jin, Wei Chang Wong, and Xinyong Dong, Magneto-optical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid, Applied Physics Letters, 2012, vol. 101, issue 24, id. 241118 (4 pages).

12. Guerrero, H., Pérez del Real, R., Fernández de Caleya, R., and Rosa, G., Magnetic field biasing in Faraday effect sensors, Applied Physics Letters, 1999, vol. 74, issue 24, id. 3702.

13. Азарова В.В., Голяев Ю.Д., Савельев И.И. Зеемановские лазерные гироскопы // Квантовая электроника, 2015. Т. 45. № 2. С. 171–179.

14. Belov, A.V., Solovieva, T.I., Intellectual Ring Laser Quality Control System – Key Component of Ring Lasers Science-Based Production, Procedia Computer Science, 2016, 96, pp. 456–464.

15. Kuznetsov, E., Golyaev, Y., Kolbas, Y., Soloveva, T., Kurdybanskaia, A., The method of intelligent computer simulation of laser gyros behavior under vibrations to ensure their reliability and cost-effective development and production, Proceedings of SPIE – The International Society for Optical Engineering, 2020, 11523, 115230B.

16. Wu F., Zhang M.-H., Fu X., Guo X., Wang J.-L., Wang J.-X., Design of ac laser frequency stabilization system for space three-axis mechanical dithering laser gyro // Zhongguo Guanxing Jishu Xuebao. 2017. Т. 25. № 2. С. 265-268.

17. Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M., Campanella, C.E., Gyroscope Technology and Applications: A Review in the Industrial Perspective, Sensors, 2017, 17(10), 2284; https://doi. org/10.3390/s17102284.

18. Kuznetsov, E., Kolbas, Y., Kofanov, Y., Kuznetsov, N., Soloveva, T., Method of Computer Simulation of Thermal Processes to Ensure the Laser Gyros Stable Operation, Mechanisms and Machine Science, 2020, 75, pp. 295–299.

19. Jun Weng, Xiaoyun Bian, Ke Kou, Tianhong Lian, Optimization of Ring Laser Gyroscope Bias Compensation Algorithm in Variable Temperature Environment, Sensors, 2020, 20(2), 377; https://doi. org/10.3390/s20020377.

20. Chen Yang, Yuanwen Cai, Chaojun Xin, Meiling Shi, Research on temperature error compensation method of vehicle-mounted laser gyro SINS, Journal of Physics Conference Series, 2021, 1885(4):042020, doi:10.1088/1742-6596/1885/4/042020.

21. Колбас Ю.Ю., Грушин M.E., Горшков В.Н. Немагнитная составляющая смещения нуля зеемановского лазерного гироскопа // Квантовая электроника, 2018. Т. 48. № 3. С. 283–289.

22. Колбас Ю.Ю., Савельев И.И., Хохлов Н.И. Влияние внешних и внутренних магнитных полей на стабильность смещения нуля зеемановского лазерного гироскопа // Квантовая электроника, 2015.Т. 45. №6. С. 573–581.

23. Savelyev, I., Sinel’nikov, A., The influence of the pumping current on the zeeman laser rotation sensors output parameters, 22nd Saint Petersburg International Conference on Integrated Navigation Systems, Proceedings, 2015, pp. 421–424.

24. Синельников А.О., Савельев И.И., Медведев А.А. Снижение тока накачки в зеемановских лазерных датчиках угловой скорости // Физическое образование в вузах. 2018. Т. 24. №1. С. 228–230.

25. Golyaev, Y.D., Zapotylko, N.R., Nedzvetskaya, A.A., Sinelnikov, A.O., Tikhmenev, N.V., Laser gyros with increased time of continuous operation, 18th Saint Petersburg International Conference on Integrated Navigation Systems, Proceedings, 2011, p. 53.

26. Голяев Ю.Д., Запотылько Н.Р., Недзвецкая, А.А., Синельников А.О., Тихменев Н.В. Термо- стабильные оптические резонаторы для зеемановских лазерных гироскопов // Оптика и спектро- скопия. 2012. Т. 113. № 2. С. 253–255.

27. Голубев В.Д., Мерзликина Н.Е., Синельников А.О., Грушин М.Е., Сухов Е.В. Ресурсные испытания зеемановских лазерных датчиков угловых скоростей // Известия Тульского государ- ственного университета. Технические науки. 2020. №1. С. 78–83.


Review

For citations:


Sinel’nikov A.O., Medvedev A.A., Golyaev Yu.D., Grushin M.E., Chekalov D.I. Thermal Zero Drifts in Magneto-Optical Zeeman Laser Gyroscopes. Giroskopiya i Navigatsiya. 2021;29(4):46-55. https://doi.org/10.17285/0869-7035.0079

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)