Study of an Interferometric Fiber-Optic Gyroscope with a Birefringence Modulator
https://doi.org/10.17285/0869-7035.0081
Abstract
The paper describes an interferometric fiber-optic gyroscope (IFOG) of a new configuration, i.e., with a birefringence modulator (IFOG-BRM) is proposed. According to the proposed scheme, a prototype model of the device has been assembled and tested to estimate its drift on a stationary base. Dependence of the IFOG-BRM drift on the temperature has been determined. According to the test results, the error of angular rate estimation is 0.05 deg/h; however, high sensitivity of the device to the absolute temperature variations has been revealed.
About the Authors
I. L. KublanovaRussian Federation
V. A. Shulepov
Russian Federation
A. V. Kulikov
Russian Federation
References
1. Sagnac, G., L’éther lumineux démontré par l’effet du vent relatif d’éther dans un interféromètre en rotation uniforme, Comptes rendus de l’Académie des Sciences, 1913, vol. 95, pp. 708–710.
2. Sagnac, G., Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant, Comptes rendus de l’Académie des Sciences, 1913, vol. 95, pp. 1410–1413.
3. Мешковский И.К., Стригалев В.Е., Дейнека Г.Б. и др. Трехосный волоконно-оптический ги- роскоп. Результаты разработки и предварительных испытаний // Гироскопия и навигация. 2011. №3 (74). С. 67–74.
4. Lin, X. et al., On the Development and Application of FOG, Gyroscopes Principles and Applications, IntechOpen, 2020.
5. Lefevre, H.C., The fiber-optic gyroscope, Artech house, 2014.
6. Korkishko, Y.N. et al., Fiber optic gyro for space applications, Results of R&D and flight tests, IEEE International Symposium on Inertial Sensors and Systems, 2016, pp. 37–41.
7. Yang, B. et al., Results and flight tests of high precision photonic crystal fiber optic gyroscope, Optical Fiber Technology, 2020, vol. 60, p. 102365.
8. Wang, Z. et al., Research on Three-Dimensional Magnetic Induced Error Model of Interferometric Fiber Optic Gyro, IEEE Photonics Journal, 2020, vol. 12, no. 5, pp. 1–12.
9. He, J., Song, N., Jin, J., Parameter Optimization for Noise Performance in Time-Division Multiplexing Fiber Optic Gyroscopes, Optik, 2021, p. 168366.
10. Kip, D., Photorefractive waveguides in oxide crystals: fabrication, properties, and applications, Applied Physics B: Lasers & Optics, 1998, vol. 67, no. 2.
11. Noguchi, K., Lithium niobate modulators, Broadband Optical Modulators: Science, Technology, and Applications, 2011, pp. 151–172.
12. Fang, X. et al., A subnanosecond polarization-independent tunable filter/wavelength router using a Sagnac interferometer, IEEE Photonics Technology Letters, 1997, vol. 9, no. 11, pp. 1490–1492.
13. Karavaev, P.M. et al., Polarization separation in titanium-diffused waveguides on lithium niobate substrates, Technical Physics Letters, 2016, vol. 42, no. 5, pp. 513–516.
14. Schmidt, R.V., Kaminow, I.P., Metal-diffused optical waveguides in LiNbO3, Applied Physics Letters, 1974, vol. 25, no. 8, pp. 458–460.
15. Toney, J.E., Lithium Niobate Photonics, Norwood, MA. Artech House, 2015, p. 288.
16. Кубланова И.Л. и др. Исследование модулятора двулучепреломления на основе ниобата лития // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. №.4. С. 613–617.
Review
For citations:
Kublanova I.L., Shulepov V.A., Kulikov A.V. Study of an Interferometric Fiber-Optic Gyroscope with a Birefringence Modulator. Giroskopiya i Navigatsiya. 2021;29(4):134-142. (In Russ.) https://doi.org/10.17285/0869-7035.0081
