Design Parameters Selection for CubeSat Nanosatellite with a Passive Stabilization System
https://doi.org/10.17285/0869-7035.0025
Abstract
Probabilistic study of angular motion dynamics has been performed for CubeSat nanosatellites with passive stabilization systems, including aerodynamic, aerodynamicgravitational, gravitational, and gravitational-aerodynamic ones. Analytical functions of the maximum angle values distribution have been obtained for a nanosatellite axes deviation from required directions (orbital velocity vector or a local vertical) for uniform distribution and Rayleigh distribution of the component values of the initial angular rate vector. Formulas have been derived and bunch graphs have been plotted for selecting the design parameters (geometrical dimensions, static stability margin, moments of inertia) which ensure the required attitude with the specified probability in circular orbits.
About the Authors
I. V. BelokonovRussian Federation
I. A. Timbai
Russian Federation
E. V. Barinova
Russian Federation
References
1. Белецкий В.В. Движение искусственного спутника относительно центра масс. М.: Наука, 1965.
2. Sarychev, V.A. and Ovchinnikov, M.Yu., Dynamics of a satellite with a passive aerodynamic orientation system, Kosm. Issled., 1994, vol. 32, no. 6, pp. 561–575.
3. Sarychev, V.A., Mirer, S.A., Degtyarev, A.A., Duarte, E.K., Investigation of equilibria of a satellite subjected to gravitational and aerodynamic torques, Celestial Mechanics and Dynamical Astronomy, 2007. vol. 97. no. 4. pp. 267–287.
4. Sarychev, V.A., Gutnik, S.A., Satellite dynamics under the influence of gravitational and aerodynamic torques. A study of stability of equilibrium positions, 2016, Cosmic Research, vol. 54 (5), pp. 388–398.
5. Rawashdeh, S., Jones, D., Erb, D., Karam, A., Lumpp, Jr, J.E., Aerodynamic attitude stabilization for a ram-facing CubeSat. Advances in the Astronautical Sciences, 2009, vol. 133, pp. 583–595.
6. Samir, A. Rawashdeh and Lumpp, James E., Jr., et al., Aerodynamic Stability for CubeSats at ISS Orbit, JoSS, 2013, vol. 2, no. 1, pp. 85–104.
7. Samir, A. Rawashdeh, Attitude Analysis of Small Satellites Using Model-Based Simulation, International Journal of Aerospace Engineering, 2019, vol. 2019, Article ID 3020581 (11 pages).
8. Armstrong, J., Casey, G., Creamer, G., Dutchover, G., Pointing control for low altitude triple CubeSat space darts, 2009, in Proc. 23rd Annu. AIAA/USU Conf. Small Satellites, Logan, UT.
9. Chesi, S., Gong, Q., Romano, M., Aerodynamic Three-Axis Attitude Stabilization of a Spacecraft by Center-of-Mass Shifting, Journal of Guidance, Control, and Dynamics, 2017, vol. 40, no. 7, pp. 1613–1626.
10. Chesi, S., Gong, Q., Romano, M., Satellite attitude control by center-of-mass shifting. Advances in the Astronautical Sciences, Advances in the Astronautical Sciences, 2014, vol. 150, pp. 2575–2594.
11. Psiaki, M. L., Nanosatellite attitude stabilization using passive aerodynamics and active magnetic torquing, Journal of Guidance, Control, and Dynamics, 2004, vol. 27, no. 3, pp. 347–355.
12. Grassi M., Attitude determination and control for a small remote sensing satellite, Acta Astronautica, 1997, vol. 40, no. 9, pp. 675–681.
13. Lovera M., Astolfi A., Global magnetic attitude control of spacecraft in the presence of gravity gradient, IEEE Transactions on Aerospace and Electronic Systems, 2006, vol. 42, no. 3. pp. 796–805.
14. Белоконов И.В., Тимбай И.А., Курманбеков М.С. Пассивная гравитационно-аэродинамическая стабилизация наноспутника // XXIV Санкт-Петербургская международная конференция по интегрированным навигационным системам. Сборник материалов. СПб.: АО «Концерн «ЦНИИ «Электроприбор», 2017. С. 412–415.
15. Белоконов И.В., Тимбай И.А., Давыдов Д.Д. Исследование возможности реализации пассивной трехосной стабилизации наноспутника на низких круговых орбитах // XXV Юбилейная Санкт-Петербургская международная конференция по интегрированным навигационным системам. Сборник материалов. СПб.: АО «Концерн «ЦНИИ «Электроприбор», 2018. С. 369–372.
16. Белоконов И.В., Тимбай И.А., Николаев П.Н. Анализ и синтез движения аэродинамически стабилизированных космических аппаратов нанокласса формата CubeSat // Гироскопия и навигация. 2018. №3 (101). С. 69–91. DOI 10.17285/0869-7035.2018.26.3.069-091.
17. Белоконов И.В., Тимбай И.А., Давыдов Д.Д. Пассивные системы стабилизации наноспутников формата CubeSat: общие принципы и особенности построения // XXVI Санкт-Петербургская международная конференция по интегрированным навигационным системам. Сборник материалов. СПб.: АО «Концерн «ЦНИИ «Электроприбор», 2019. С. 98–104.
18. ГОСТ 4401-81 Атмосфера стандартная. Параметры. Введ. 1981-02-27. М.: Изд-во стандартов. 1981. 181 с.
19. Евразийский патент на изобретение (21) 201400132 (13) A1. Способ аэродинамической стабилизации наноспутника класса CubеSat и устройство его осуществления (варианты), опубл. 30.07.2015 г. / И.В. Белоконов, И.А. Тимбай, Е.В. Устюгов.
20. Kirillin, A., Belokonov, I., Timbai, I., Kramlikh, A., Melnik, M., Ustiugov, E., Egorov, A., and Shafran, S., SSAU nanosatellite project for the navigation and control technologies demonstration, Procedia Engineering, 2015, vol. 104, pp. 97–106.
21. Shakhmatov, E., Belokonov, I., Timbai, I., Ustiugov, E., Nikitin, A., and Shafran, S., SSAU project of the nanosatellite SamSat-QB50 for monitoring the Earth’s thermosphere parameters, Procedia Engineering, 2015, vol. 104, pp. 139–146.
22. https://www.qb50.eu/.
23. https://www.space-track.org.
24. Belokonov, I., Timbai, I., and Nikolaev P., Approach for estimation of nanosatellite’s motion concerning of mass centre by trajectory measurements (IAA-B12-0703), 12th IAA Symposium on Small Satellites for Earth Observation, Berlin, Germany, 6–10 May 2019 (https://web.tresorit.com/l#xb50seCuu9albxLzoVQdA).
Review
For citations:
Belokonov I.V., Timbai I.A., Barinova E.V. Design Parameters Selection for CubeSat Nanosatellite with a Passive Stabilization System. Giroskopiya i Navigatsiya. 2020;28(1):81-100. (In Russ.) https://doi.org/10.17285/0869-7035.0025