The Outlook for Gyroscopy
https://doi.org/10.17285/0869-7035.0028
Abstract
Modern gyroscopy is characterized by a great diversity of gyroscopes that have been and are being developed. Dominant positions belong to wave optic gyroscopes implementing the relativistic Sagnac effect, and micromechanical vibratory gyroscopes the operating principle of which is based on Coriolis effect. At the same time, high-precision rotor mechanical gyroscopes based on the principles of rotating solid body dynamics partially retain their position; also, the research of gyroscopes developed on the principles of nuclear physics and quantum optics is progressing successfully. Current state and the prospects of gyroscopes development are discussed in this paper.
About the Author
V. G. PeshekhonovRussian Federation
References
1. https://www.kvh.com/Military-and-Government/Gyros-and-Inertial-Systems-and-Compasses/GyrosandIMUs-and-INS.aspx.
2. https://www.ixblue.com.
3. Степанов А.П., Емельянцев Г.И., Блажнов Б.А. Об эффективности модуляционных поворотов измерительного модуля БИНС на ВОГ морского применения // Гироскопия и навигация. 2015. №4 (91). С 42.
4. Журавлев В.Ф., Климов Д.М. Волновой твердотельный гироскоп. М.: Наука, 1985. 128 с.
5. Lynch, D.D., Vibration-induced drift in the hemispherical resonator gyro, Proc. of the Annual Meeting of the Institute of Navigation 23–25 June 1987, p. 34.
6. Мейер Д., Розелле Д. Инерциальная навигационная система на основе миниатюрного волнового твердотельного гироскопа // Гироскопия и навигация. 2012. №3 (78). С. 45–54.
7. Trusov, A.A., et all., Continuously self-calibrating CVG system using hemispherical resonator gyroscopes, 2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS) Proceedings, Hapuna Beach, HI, USA, 23–26 March 2015. DOI: 10.1109/ISISS.2015.7102362.
8. Делэйе Ф. Бортовая инерциальная система координат SpaceNaute® для европейской ракетыносителя «Ариан-6» на основе волнового твердотельного гироскопа // Гироскопия и навигация. 2018. №4 (103). С. 3–13.
9. https://www.safran-electronics-defense.com/naval-solutions/submarines/navigation-systems.
10. htpps:/www.i-micronews.com/mems-sensors/9751-nanusen-solvesthe-problem-of-stiction-in-memsinertialsensors-by-going-smallerand-creating-nano-sensors-in- standard-cmos.html.
11. www.geo-matching.com/products/id4387-m-g364pdc0.html.
12. Maleki, L. et all., Sensitivity Limitations of a Resonant Microphotonic Gyroscope, IEEE Photonics Conference, 2016. DOI 10.1109/IPCon.2016.7831128.
13. https://ieeexplore.ieee.org/document/6851515.
14. Sanders, G.A. et all., Fiber optic gyro development at Honeywell, Proc. SPIE 9852, Fiber Optic Sensors and Applications XIII, 985207, 12 May 2016. DOI: 10.1117/12.2228893.
15. Лефевр Э.К. Волоконно-оптический гироскоп: достижения и перспективы // Гироскопия и навигация. 2012. №4 (79). С. 3–9.
16. Delhaye, F., HRG by Safran. The Game-changing Technology, 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 26–29 March 2018, Moltrasio, Italy, DOI:10.1109/ ISISS.2018.8358163.
17. Мейер Д., Ларсен М. Гироскоп на ядерном магнитном резонансе для инерциальной навигации // Гироскопия и навигация. 2014. №1 (84). С.3–13.
18. Вершовский А.К., Литманович Ю.А., Пазгалев А.С., Пешехонов В.Г. Гироскоп на ядерном магнитном резонансе: предельные характеристики // Гироскопия и навигация. 2018. №1 (100). С. 55–80.
19. Kramer, D., DARPA Looks Beyond GPS for Positioning, Navigation and Timing, Physics Today, vol. 67, № 10, doi: 10.1063/PT.3.2543.
Review
For citations:
Peshekhonov V.G. The Outlook for Gyroscopy. Giroskopiya i Navigatsiya. 2020;28(2):3-10. (In Russ.) https://doi.org/10.17285/0869-7035.0028