Modeling of the Dimensional Dependence of NMR Isotope Shift in Xenon
https://doi.org/10.17285/0869-7035.0030
Abstract
Reduction of optical quantum sensors in size, including nuclear magnetic resonance (NMR) gyroscopes, implies primarily downsizing of the working gas cell. This paper considers the dependence of isotope shift in the balanced scheme based on NMR in xenon isotopes on the dimensions of the gas cell. With this aim in view, an experimental and theoretical studies of the factors affecting the relaxation rate of xenon isotopes have been carried out. The proposed numerical model allows predicting the magnitude of the isotope shift for cells of various sizes with variations in their basic parameters, namely, temperature and pressure of the gas mixture. Based on the results of the numerical simulation, recommendations are given for optimizing the basic parameters of the gas cell by changing its dimensions.
About the Authors
A. K. VershovskiiRussian Federation
V. I. Petrov
Russian Federation
References
1. Virgincar, R.S., Cleveland, Z.I., Sivaram, K.S., Freeman, M.S., Nouls, J., Cofer, G.P., MartinezJimenez, S., He, M., Kraft, M., Wolber, J., Page McAdams, H., Driehuys, B., Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease, NMR in Biomedicine, 2013, vol. 26, no. 4, pp. 424–435.
2. Chang, Y.V., Quirk, J.D., Ruset, L.C., Atkinson, J.J., Hersman, F.W., Woods, J.C., Quantification of human lung structure and physiology using hyperpolarized 129 Xe: Xenon MR of Human Lung, Magnetic Resonance in Medicine, 2014, vol. 71,no. 1, pp. 339–344.
3. Kanegsberg, E., A Nuclear Magnetic Resonance (NMR) Gyro With Optical Magnetometer Detection, SPIE, San Diego, United States, 1978, vol. 0157, pp. 73–80.
4. Walker, T., Larsen, M., Chapter eight–spin-exchange-pumped NMR gyros, Adv. At. Mol. Opt. Phys., 2016, vol. 65, pp. 373–401.
5. Вершовский А.К., Литманович Ю.А., Пазгалев А.С., Пешехонов В.Г. Гироскоп на ядерном магнитном резонансе: предельные характеристики // Гироскопия и навигация. 2018. Т. 26. №1 (100). С. 55–80.
6. Попов Е.Н., Баранцев К.А., Ушаков Н.А., Литвинов А.Н., Лиокумович Л.Б., Шевченко А.Н., Скляров Ф.В., Медведев А.В. Характер сигнала оптической схемы квантового датчика вращения на основе ядерного магнитного резонанса // Гироскопия и навигация. 2018. Т. 26. №1 (100). С. 93–106.
7. Gemmel, C., Heil, W., Karpuk, S., Lenz, K., Ludwig, Ch., Sobolev, Yu., Tullney, K., Burghoff, M., Kilian, W., Knappe-Grüneberg, S., Müller, W., Schnabel, A., Seifert, F., Trahms, L., Baeßler, St., Ultra sensitive magnetometry based on free precession of nuclear spins, The European Physical Journal D, 2010, vol. 57, no. 3, pp. 303–320.
8. Bulatowicz, M., Griffith, R., Larsen, M., Mirijanian, J., Fu, C.B., Smith, E., Snow, W.M., Yan, H., Walker, T.G., Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas, Physical Review Letters, 2013, vol. 111, no. 10, p. 102001.
9. Allmendinger, F., Heil, W., Karpuk, S., Kilian, W., Scharth, A., Schmidt, U., Schnabel, A., Sobolev, Yu., Tullney, K., New Limit on Lorentz-Invariance- and CPT-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He–129Xe Comagnetometer, Phys. Rev. Lett., 2014, vol. 112, no. 11, p. 110801.
10. Grossetête, F., Relaxation par collisions d’échange de spin, Journal de Physique, 1964, vol. 25, no. 4, pp. 383–396.
11. Herman, R.M., Theory of Spin Exchange between Optically Pumped Rubidium and Foreign Gas Nuclei, Physical Review, 1965, vol. 137, no. 4A, pp. A1062–A1065.
12. Walker, T.G., Korver, A., Thrasher, D., Bulatowicz, M., Synchronously pumped NMR gyro, IEEE, 2015, pp. 1–4.
13. Thrasher, D.A., Sorensen, S.S., Weber, J., Bulatowicz, M., Korver, A., Larsen, M., Walker, T.G., Continuous comagnetometry using transversely polarized Xe isotopes, Physical Review A, 2019, vol. 100, no. 6.
14. Вершовский А.К., Пазгалёв А.С., Петров В.И. Природа эффекта рассогласования частот прецессии ядер 129Xe и 131Xe при спин-обменной накачке атомами щелочного металла // Журнал технической физики. 2018. Т. 44. № 7. С. 88.
15. Petrov, V.I., Pazgalev, A.S., Vershovskii, A.K., Isotope Shift of Nuclear Magnetic Resonances in 129Xe and 131Xe Caused by Spin-Exchange Pumping by Alkali Metal Atoms, IEEE Sensors Journal, 2020, vol. 20, no. 2, pp. 760–766.
16. Knappe, S., MEMS Atomic Clocks, Comprehensive Microsystems, 2007, vol. 3, pp. 571–612.
17. Eklund, E.J., Shkel, A.M., Knappe, S., Donley, E., Kitching, J., Glass-blown spherical microcells for chip-scale atomic devices, Sensors and Actuators A: Physical, 2008, vol. 143, no. 1, pp. 175–180.
18. Мейер Д., Ларсен М. Гироскоп на ядерном магнитном резонансе для инерциальной навигации // Гироскопия и навигация. 2014. №1 (84). С. 3–13.
19. Bouchiat, M.A., Brossel, J., Relaxation of Optically Pumped Rb Atoms on Paraffin-Coated Walls, Phys. Rev., 1966, vol. 147, no. 1, pp. 41–54.
20. Happer, W., Optical Pumping, Rev. Mod. Phys., 1972, vol. 44, no. 2, pp. 169–249.
21. Zeng, X., Miron, E., Van Wijngaarden, V.A., Schreiber, D., Happer, W., Wall relaxation of spin polarized 129Xe nuclei, Physics Letters A, 1983, vol. 96, no. 4, pp. 191–194.
22. Happer, W., Miron, E., Schaefer, S., Schreiber, D., Van Wijngaarden, V.A., Zeng, X., Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms, Phys. Rev. A, 1984, vol. 29, no. 6, pp. 3092–3110.
23. Zeng, X., Wu, Z., Call, T., Miron, E., Schreiber, D., Happer, W., Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and 129Xe nuclei in alkali-metal – noble-gas van der Waals molecules, Phys. Rev. A, 1985, vol. 31, no. 1, pp. 260–278.
24. Hsu, J., Wu, Z., Happer, W., Cs induced 129Xe nuclear spin relaxation in N2 and He buffer gases, Physics Letters A, 1985, vol. 112, no. 3–4, pp. 141–145.
25. Wu, Z., Schaefer, S., Cates, G.D., Happer, W., Coherent interactions of the polarized nuclear spins of gaseous atoms with the container walls, Phys. Rev. A, 1988, vol. 37,no. 4, pp. 1161–1175.
26. Wu, Z., Happer, W., Kitano, M., Daniels, J., Experimental studies of wall interactions of adsorbed spin-polarized 131Xe nuclei, Phys. Rev. A, 1990, vol. 42, no. 5, pp. 2774–2784.
27. Несмеянов А.Н. Давление пара химических элементов. Москва: Издательство Академии Наук СССР, 1961. 396 с.
28. Вершовский А.К., Пазгалёв А.С. Оптимизация фактора качества магнитного Mx-резонанса в условиях оптической накачки // ЖТФ. 2007. № 5. C. 116–124.
29. Seltzer, S.J., Developments in Alkali-Metal Atomic Magnetometry: Ph.D. Thesis. Princeton, NJ, USA: Princeton University, 2008. 312 p.
Review
For citations:
Vershovskii A.K., Petrov V.I. Modeling of the Dimensional Dependence of NMR Isotope Shift in Xenon. Giroskopiya i Navigatsiya. 2020;28(2):11-24. (In Russ.) https://doi.org/10.17285/0869-7035.0030