Preview

Giroskopiya i Navigatsiya

Advanced search

Comparison of GPS Velocity Obtained Using Three Different Estimation Models

https://doi.org/10.17285/0869-7035.0033

Abstract

This study analyses the GPS velocity estimation performances of three different estimation models, namely, the time-differenced carrier phase velocity estimation (TDCPVE), Doppler observation velocity estimation (DopplerVE), and precise point positioning velocity estimation (PPPVE). Static and vehicle kinematic experiments are conducted for validation. Under simulated kinematic conditions using static data, the accuracy of the DopplerVE is the worst, and the precision of the velocity by the PPPVE is the same as with the TDCPVE. Under kinematic conditions, the accuracies of the three methods are related to the motion state of the mobile carrier (such as its acceleration and turning). When the sampling interval is 1 s, the TDCPVE can obtain precise velocity using a singlefrequency stand-alone GPS receiver; the TDCPVE and DopplerVE can obtain accuracies of the same order of magnitude with broadcast and precise ephemerides, and can be used for real-time velocity measurement; the PPPVE can obtain not only an accurate position, but also an accurate velocity.

About the Authors

X. Wang
National Time Service Center, Chinese Academy of Sciences, Xi’an, China; University of Chinese Academy of Sciences, Beijing, China
China


R. Tu
National Time Service Center, Chinese Academy of Sciences; Key Laboratory of Precision Navigation and Timing, Chinese Academy of Sciences, Xi’an, China; University of Chinese Academy of Sciences, Beijing, China
China


J. Han
National Time Service Center, Chinese Academy of Sciences; Key Laboratory of Precision Navigation and Timing, Chinese Academy of Sciences
China


R. Zhang
National Time Service Center, Chinese Academy of Sciences; Key Laboratory of Precision Navigation and Timing, Chinese Academy of Sciences
China


L. Fan
National Time Service Center, Chinese Academy of Sciences; Key Laboratory of Precision Navigation and Timing, Chinese Academy of Sciences
Russian Federation


References

1. Zhang, W., Ghogho, M., and Aguado, L. E., GPS single point positioning and velocity computation from RINEX file under Matlab environment, Proc. 13th IAIN World Congress, Stockholm, Sweden, 2009.

2. Peng, Y.Q., Xu, C.D., and Li, Z., Application of MIEKF optimization algorithm in GPS positioning and velocity measurement, Computer Simulation, 2018, vol. 35, no. 7, pp. 65–69.

3. Yan, Y.W., Ye, S.R., and Xia, J.C., Research of BDS velocity estimation with time differenced carrier phase method, Science of Surveying & Mapping, 2016, vol. 41, no. 7.

4. Wang, F.H., Zhang, X.H., and Huang, J.S., Error analysis and accuracy assessment of GPS absolute velocity determination without SA, Geomatics and Information Science of Wuhan University, 2007, vol. 11, no. 2, pp. 133–138.

5. Branzanti, M., Colosimo, G., and Mazzoni, A., Variometric approach for real-time GNSS navigation: first demonstration of kin-VADASE capabilities, Advances in Space Research, 2016, vol. 59, no. 11.

6. Sun, W., Duan, S.L., Ding, W., and Kong, Y., Comparative analysis on velocity determination by GPS single point, Journal of Navigation & Positioning, 2017, vol. 5, no. 1, pp. 81–85, 99.

7. Guo, A.Z., Wang, Y., Liu, G.Y., Zheng, H., and Zhang, M.S., Error analysis of high-rate GPS data real-time single-point velocity-determination, Journal of Geodesy & Geodynamics, 2013, vol. 33, no. 5.

8. Freda, P., Angrisano, A., Gaglione, S., and Troisi, S., Time-differenced carrier phases technique for precise GNSS velocity estimation, GPS Solutions, 2015, vol. 19, no. 2, pp. 335–341.

9. Ding, W.D., & Wang, J.L., Precise velocity estimation with a stand-alone GPS receiver, The Journal of Navigation, 2011, vol. 64, no. 2, p. 15.

10. Soon, B. K. H., Scheding, S., Lee, H. K., Lee, H. K., and Durrant-Whyte, H., An approach to aid INS using time-differenced GPS carrier phase (ДВФН) measurements, GPS Solutions, 2008, vol. 12, no. 4, pp. 261–271.

11. Han, S., and Wang, J., Integrated GPS/INS navigation system with dual-rate Kalman filter, GPS Solutions, 2012, vol. 16, no. 3, pp. 389–404.

12. Cheng, Y., Yu, X. W., Ye, C. Y., and Zhang, M., Analysis of single-point GPS velocity determination with Doppler, GNSS World of China, 2008, vol. 33, no. 1, pp. 31–34.

13. He, H.B., Yang, Y.X., Sun, Z.M., and Ma, X., Mathematic model and error analyses for velocity determination using GPS Doppler measurements, Journal of Institute of Surveying and Mapping, 2003, vol. 20, no. 2.

14. He, H.B., Yang, Y.X., and Sun, Z.M., A comparison of several approaches for velocity determination with GPS, Acta Geodaetica et Cartographica Sinica, 2002, vol. 31, no. 3, pp. 217–221.

15. Wang, Q. X., and Xu, T. H., Combining GPS carrier phase and Doppler observations for precise velocity determination, Science in China Series G (Physics, Mechanics and Astronomy), 2011, vol. 54, no. 6, pp. 1022–1028.

16. Tu, R., Fast determination of displacement by PPP velocity estimation, Geophysical Journal International, 2014, vol. 196, no. 3, pp. 1397–1401.

17. Graas, F. V., and Soloviev, A., Precise velocity estimation using a stand-alone GPS receiver, Navigation, 2004, vol. 51, no. 4, pp. 283–292.

18. Zumberge, J., Heflin, M., Jefferson, D., Watkins, M.M., and Webb, F.H., Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, 1997, vol. 102, no. B3, pp. 5005–5017.

19. Kouba, J., and Héroux, P., Precise point positioning using IGS orbit and clock products, GPS Solutions, 2001, vol. 5, no. 2, pp. 12–28.

20. Gao, Y., Lahaye, F., and Heroux, P., Modeling and estimation of C1–P1 bias in GPS receivers, Journal of Geodesy, 2001, vol. 74, no. 9, pp. 621–626.

21. Abdel-Salam, M., Precise point positioning using un-differenced code and carrier phase observations, PhD Thesis, the University of Calgary, Calgary, AB, Canada, 2005.

22. Kalman, R. E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering Transactions, 1960, vol. 82, pp. 35–45.

23. Saastamoinen, J., Atmospheric correction for the troposphere and stratosphere in radio ranging satellites, Proc. Int. Sympos. on the Use of Artificial Satellites for Geodesy, 1971, 247–251.


Review

For citations:


Wang X., Tu R., Han J., Zhang R., Fan L. Comparison of GPS Velocity Obtained Using Three Different Estimation Models. Giroskopiya i Navigatsiya. 2020;28(2):54-69. (In Russ.) https://doi.org/10.17285/0869-7035.0033

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)