Preview

Giroskopiya i Navigatsiya

Advanced search

Effect of Unequal Intensities of Counter-Propagating Waves on the Frequency Response of Laser Gyroscopes

https://doi.org/10.17285/0869-7035.0050

Abstract

Frequency response of a laser gyroscope was studies by numerical modelling of a complete system of equations describing it. The calculation results are compared to the results of experimental measurements taken on a precision dynamic test bench. The frequency response was measured for a gyroscope based on a four-mirror ring laser with a non-planar contour, operating on He-Ne active mix at the wavelength of 632.8 nm. In the gyroscope under study, the sign-variable dither was implemented on the basis of Zeeman magnetooptical effect. The relationship between the measured and designed values of the frequency response distortions has been found. The relationship between the frequency response distortions in a laser gyroscope and inequality of field intensities of the counterpropagating waves (CPW) has been numerically calculated and confirmed by experiments. Based on the research results, the parameters of a ring laser can be optimized to improve the accuracy of measurements by means of laser gyroscopes.

About the Authors

V. V. Azarova
Polyus Research Institute named after M.F. Stel’makh, JSC, Moscow
Russian Federation


Yu. D. Golyaev
Polyus Research Institute named after M.F. Stel’makh, JSC, Moscow
Russian Federation


E. V. Kuznetsov
Polyus Research Institute named after M.F. Stel’makh, JSC, Moscow
Russian Federation


References

1. Пешехонов В.Г. Перспективы развития гироскопии // Гироскопия и навигация. 2020. №2. С. 3–10. DOI 10.17285/0869-7035.0028.

2. http://www/sagem-ds/com.

3. http://www.aerospace.honeywell.com./guidance-sensor-inertial-products.

4. Barbour, N. and Schmidt, G., Inertial Sensor Technology Trends, Sensors Journal, IEEE, 2001, 1, 4, pp. 332–339.

5. Wang, S., Zhang, Z., Research on Principle, Application and Development Trend of Laser Gyro, Journal of Physics: Conference Series, 2020, vol. 1549, issue 2, 022118.

6. Найда О.Н., Руденко В.В. Частотные характеристики кольцевого лазера при больших амплитудах периодической частотной подставки // Квантовая электроника. 1989. Т. 16. № 7. С. 1308–1314.

7. Aronowitz, F., Optical Gyros and their Applications, RTO AGARDograph, 1999, 339, 3-1.

8. Золотоверх И.И., Ларионцев Е.Г. Возможность уменьшения нелинейных искажений частотной характеристики в газовом кольцевом лазере с периодической знакопеременной подставкой // Квантовая электроника. 2020. Т. 50. № 5. С. 493–495.

9. Азарова В.В., Макеев А.П., Кузнецов Е.В., Голяев Ю.Д. Частотная характеристика ЛГ в широком диапазоне угловых скоростей вращения // Гироскопия и навигация. 2018. Т. 26. №2 (101). С. 3–14. DOI 10.17285/0869-7035.2018.26.2.003-014.

10. Алексеев С.Ю., Чиркин М.В., Мишин В.Ю., Морозов Д.А., Борисов М.В., Молчанов А.В., Захаров М.А. Методика измерения порога синхронизации при изготовлении и эксплуатации прецизионных кольцевых лазеров // Гироскопия и навигация. 2013. № 2. С. 75–83.

11. Кузнецов А.Г., Молчанов А.В., Чиркин М.В., Измайлов Е.А. Прецизионный лазерный гироскоп для автономной инерциальной навигации // Квантовая электроника. 2015. Т. 45. №1. С. 78–88.

12. Бессонов А.С., Макеев А.П., Петрухин Е.А. Измерения комплексных коэффициентов связи в кольцевом резонаторе лазерного гироскопа // Квантовая электроника. 2017. Т. 47. № 7. С. 675–682.

13. Бекетов С.А., Бессонов А.С., Петрухин Е.А., Хохлов И.Н., Хохлов Н.И. Влияние обратного рассеяния на нелинейные искажения масштабного коэффициента лазерного гироскопа с прямоугольной подставкой // Квантовая электроника. 2019. Т. 49. № 11. С. 1059–1067.

14. Weng, J., Bian, X., Kou, K., Lian, T., Optimization of ring laser gyroscope bias compensation algorithm in variable temperature environment, Sensors (Switzerland), 2020, vol. 20, issue 2, 377.

15. Fang, F., Zeng, W., Li, Z., Coupled dynamic analysis and decoupling optimization method of the laser gyro inertial measurement unit, Sensors (Switzerland), 2020, vol. 20, issue 1, 111.

16. Petrukhin, E.A., Bessonov, A.S., Setup for Measuring Complex Coupling Parameters in Laser Gyro Ring Cavity, 27th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2020 – Proceedings, May 2020, 9133777.

17. Азарова В.В., Голяев Ю.Д., Савельев И.И. Зеемановские лазерные гироскопы // Квантовая электроника. 2015. Т.45. №2. С. 171–179.

18. https://www.wikidata.org/wiki/Q725944#sitelinks-wikipedia

19. Горшков В.Н., Грушин М.Е., Ларионцев Е.Г., Савельев И.И., Хохлов Н.И. Частотная характеристика кольцевого газового лазера со знакопеременной подставкой при частотной невзаимности, сравнимой с амплитудой подставки // Квантовая электроника. 2016. Т. 46. №11. С. 1061.

20. Nelson, K.D., Puckett, M.W., Wu, J., A Ring-laser Gyro Based on Stimulated Brillouin Scattering in Silicon Nitride Waveguides, IEEE Research and Applications of Photonics in Defense Conference, RAPID 2020 – Proceedings, August 2020, 9195706.

21. Li, Q., Li, D., Wang, C., Xiong, C., Yang, C., Study on stability of Ta2O5/Al2O3 laser gyro mirrors exposed in plasma, Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, vol. 49, 20200064.

22. Bosi, F., Di Virgilio, A.D.V., Giacomelli, U., Simonelli, A., Terreni, G., Basti, A., Beverini, N., Carelli, G., Ciampini, D., Fuso, F., Maccioni, E., Marsili, P., Stefani, F., Small scale ring laser gyroscopes as environmental monitors, Journal of Physics: Conference Series, 2020, vol. 1468, issue 1, 012220.

23. Kuznetsov, E., Golyaev, Y., Kolbas, Y., Kofanov, Y., Kuznetsov, N., Soloveva, T., Kurdybanskaia, A., The method of intelligent computer simulation of laser gyros behavior under vibrations to ensure their reliability and cost-effective development and production, Proceedings of SPIE – The International Society for Optical Engineering, 2020, vol. 11523, 115230B.

24. Tao, Y., Li, S., Fu, Q., Zheng, J., Liu, S., Yuan, Y., A Method for Improving Light Intensity Stability of a Total Reflection Prism Laser Gyro Based on Series Correction and Feedforward Compensation, IEEE Access, 2020, vol. 8, 8957561, pp. 13651–13660.

25. Kuznetsov, E., Kolbas, Y., Kofanov, Y., Kuznetsov, N., Soloveva, T., Method of Computer Simulation of Thermal Processes to Ensure the Laser Gyros Stable Operation, Mechanisms and Machine Science, 2020, vol. 75, pp. 295–299.

26. Wen, D., Li, D., Zhao, J., Analysis on the Polarization Property of the Eigenmodes in a Nonplanar Ring Resonator, Appl. Optics, 2011, 50:18, 3057–3063.

27. Li, X., Wang, L., Sheng, Q., Prediction of the Random Error of a Laser Gyroscope Using the Modified GM (1, 1) Model, Guangxue Xuebao/Acta Optica Sinica, 2020, vol. 40, issue 12, 1204001.

28. Fang, F., Zeng, W., Li, Z., Coupled dynamic analysis and decoupling optimization method of the laser gyro inertial measurement unit, Sensors (Switzerland), 2020, vol. 20, issue 1, 111.


Review

For citations:


Azarova V.V., Golyaev Yu.D., Kuznetsov E.V. Effect of Unequal Intensities of Counter-Propagating Waves on the Frequency Response of Laser Gyroscopes. Giroskopiya i Navigatsiya. 2020;28(4):71-81. https://doi.org/10.17285/0869-7035.0050

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)