Preview

Giroskopiya i Navigatsiya

Advanced search

Shockproof Precision Strapdown Inertial Navigation System Development for Terrestrial Applications

https://doi.org/10.17285/0869-7035.2019.27.2.082-094

Abstract

The paper discusses the structure, algorithms and testing results for a hybrid precision strapdown inertial navigation system (SINS) which is resistant to fast extreme impacts. Impact resistance of the precision SINS is provided by incorporating an auxiliary strapdown inertial attitude control system (SIACS) based on rough sensors that can endure fast extreme shocks without losing the attitude accuracy; and by post-processing of inertial sensors data performed in the onboard computer simultaneously with the main navigation task. The post-processing procedure is designed to identify the moment of shock occurrence and to repeat the attitude problem solving in the onboard computer based on the auxiliary SIACS data within the time interval of exposure to the extreme shock. In the absence of shocks, the auxiliary SIACS is calibrated in accordance with the data of the main precision SINS. The main precision SINS is based on precision fiber-optic gyros (FOG) and the auxiliary SIACS – on micromechanical gyros (MMG). Thus, a hybrid-type precision SINS has been constructed, which has demonstrated required accuracy level during onground vehicle tests, including shock tests.

About the Authors

A. P. Kolevatov
Perm’Instrumentation Research and Production Company, Perm’, Russia
Russian Federation


T. A. Ul’yanovskaya,
Perm’Instrumentation Research and Production Company, Perm’, Russia
Russian Federation


D. Yu. Zobachev
Perm’Instrumentation Research and Production Company, Perm’, Russia
Russian Federation


I. V. Fedorov
Perm’Instrumentation Research and Production Company, Perm’, Russia
Russian Federation


References

1. Lefevre, H., The Fiber-Optic Gyroscope, London: ArtechHouse, 1992.

2. Lahham, J.I., Ryan, S.J., Wigent, D.J., Mosher, M.W. and Klembczyk, A.R., Mitigation of military high shock transients for ship board gyrocompass with fiber optic gyros, http://www.taylordevices.com/custom/pdf/tech-papers/84-FiberOpticGyroIsolation.pdf.

3. Meshkovskii, I.K., Strigalev, V.Ye., Deineka, G.B., Peshekhonov, V.G., Volynskii, D.V. and Untilov, A.A., Three-axis fiber optical gyroscope. The results of the development and tests, Proc. 18th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, 2011, pp. 7–12.

4. Korkishko, Yu.N., Fedotov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., Obukhovich, D.V., Prilutskii, S.V., Kostitskii, S.M., Fedorov, I.V., Zuev, A.I., and Varnakov, V.K., Precision fiber-optic gyroscope OIUS-5000, Oboronnaya tekhnika, 2015, no. 7-8, pp. 84–92.

5. Kolevatov, A.P., Nikolaev, S.G., Andreev, A.G., Ermakov, V.S., Kel’, O.L., and Shevtsov, D.I., Fiber-optic gyroscope of navigation-grade strapdown inertial systems: Development, temperature compensation and tests, Giroskopiya i navigatsiya, 2010, no. 3, pp. 49–60.

6. Kolevatov, A.P., Budkin, V.L., Ermakov, V.S., Kel’, O.L., Parfenov, A.S., Struk, V.K., and Shirokov, Development of strapdown inertial systems for on-ground vehicles, Oboronnaya tekhnika, 2014, no. 3–4, pp. 27–35.

7. Eliseev, D.P., Review of methods of inertial sensitive elements protection from inertia effects, Proc. 14th Conference of Young Scientists «Navigation and Motion Control», St. Petersburg, 2012, pp. 464–470.

8. Korkishko, Yu.N., Fedotov, V.A., Prilutskii, V.E., Ponomarev, V.G., Morev, I.V., Obukhovich, D.V., Prilutskii, S.V., Kostitskii, S.M., Fedorov, I.V., Zuev, A.I., and Varnakov, V.K., High-precision FOG with an extended dynamical range, Proc. 21st St. Petersburg International Conference on Integrated Navigation Systems, 2014, pp. 183–190.

9. Grifi, D., Senatore, R., Quatraro, E., Verola, M., and Pizzarulli, A., FOG-based INS for satellite launcher application, Proc. Gyro Technology Symposium, Germany, 2017, pp. P05.1–P05.12.

10. Andreev, A.G., Ermakov, V.S., Kolevatov, A.P., Zobachev, D.Yu., and Ul’yanovskaya, T.A., Utility model patent No. 134314, 2013.

11. ADXRS 620. Data Sheet Rev. B.

12. http://www.analog.com/en/products/mems/mems-gyroscopes/adxrs620.html#product-overview.

13. ADXRS 646. Data Sheet Rev. B.

14. http://www.analog.com/en/products/mems/mems-gyroscopes/adxrs646.html#product-overview.

15. Branets, V.N., and Shmyglevskii, I.P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela (Use of Quaternions in Solid Body Attitude Problems), Moscow: Nauka, 1973.

16. Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Chast’ 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 1. Introduction to the Estimation Theory), St. Petersburg: Concern CSRI Elektropribor, JSC, 2017.

17. Deppe, O., Dorner, G., König, S., Martin, T., Voigt, S., Zimmermann, S., MEMS and FOG Technologies for Tactical and Navigation Grade Inertial Sensors – Recent Improvements and Comparison, Sensors, 2017, 17(3), 567. https://doi.org/10.3390/s17030567.


Review

For citations:


Kolevatov A.P., Ul’yanovskaya, T.A., Zobachev D.Yu., Fedorov I.V. Shockproof Precision Strapdown Inertial Navigation System Development for Terrestrial Applications. Giroskopiya i Navigatsiya. 2019;27(2):82-94. (In Russ.) https://doi.org/10.17285/0869-7035.2019.27.2.082-094

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)