Пути решения проблем создания сетевой подводной связи и позиционирования
https://doi.org/10.17285/0869-7035.2019.27.2.106-135
Аннотация
Рассмотрены основные проблемы создания сетевой подводной связи, основное отличие которой от традиционной гидроакустической связи состоит в одновременном информационном взаимодействии большого числа пространственно разнесенных абонентов, включающем обмен сообщениями между ними и их высокоточное позиционирование. Этот факт добавляет к существующим проблемам традиционной гидроакустической связи, обусловленным в основном сложностью и изменчивостью гидроакустического канала распространения сигнала, ряд других, например, коллизии в сети, возникающие при одновременной передаче сообщений несколькими абонентами и требующие принятия специальных организационно-технических мер по их устранению (минимизации), а также обусловленную особенностями гидроакустической среды сложную конфигурацию зон парной взаимной «слышимости» абонентов, что ведет к необходимости нетривиальной маршрутизации потоков данных от источника к получателю. В работе показано, что решить эти вопросы может разработка методов формирования и излучения сигналов связи, которые затем трансформируются в протоколы взаимодействия абонентов при передаче и приеме сообщений и реализуются в цифровых гидроакустических модемах, в результате превратившихся в сложные радиоэлектронные устройства.
Об авторах
К. Г. КебкалГермания
Кебкал Константин Георгиевич. Доктор технических наук, директор, Evologics GmbH и директор по науке, АО «Лаборатория гидроакустической телеметрии и навигации»
А. И. Машошин
Россия
Машошин Андрей Иванович. Доктор технических наук, профессор, начальник научно-исследовательского центра
Н. В. Мороз
Великобритания
Мороз Нил Вадимович. Доктор наук, научный сотрудник
Список литературы
1. Агеев М.Д., Киселев Л.В., Матвиенко Ю.В. и др. Автономные подводные роботы. Системы и технологии. М.: Наука, 2005. 398 с. (Ageev, M.D., Kiselev, L.V., Matvienko, Yu.V. et al., Avtonomnye podvodnye roboty. Sistemy i tehnologii (Underwater Autonomous Robots. Systems and Technologies), Moscow: Nauka, 2005.)
2. Инзарцев А.В., Каморный А.В., Львов О.Ю., Матвиенко Ю.В., Рылов Н.И. Применение автономного необитаемого подводного аппарата для научных исследований в Арктике // Подводные исследования и робототехника. 2007. №2(4). С. 5–14. (Inzartsev, A.V., Kamornyi, A.V., L'vov, O.Yu., Matvienko, Yu.V., and Rylov, N.I., Using autonomous unmanned vehicles for Scientific Research in the Arctic, Podvodnye issledovaniya i robototehnika, 2007, no. 2, pp. 5–14.)
3. Гизитдинова М.Р., Кузьмицкий М.А. Мобильные подводные роботы в современной океанографии и гидрофизике // Фундаментальная и прикладная гидрофизика. 2010. Т. 3. №1 (7). С. 4–13. (Gizitdinova, M.R. and Kuz'mitskii, M.A., Mobile underwater robots in modern oceanography and hydrophysics, Fundamental'naya i prikladnaya gidrofizika, 2010, vol. 3, no. 1, pp. 4–13.)
4. Боженов Ю.А. Использование автономных необитаемых подводных аппаратов для исследования Арктики и Антарктики // Фундаментальная и прикладная гидрофизика. 2011. Т. 4. №1. С.4–68. (Bozhenov, Yu.A., Use of the autonomous underwater vehicles for the Arctic and Antarctic regions exploration, Fundamental'naya i prikladnaya gidrofizika, 2011, vol. 4, no. 1, pp. 4–68.)
5. Millar, G., Mackay, L., Maneuvering Under the Ice, Sea Technology, 2015, vol. 56, no. 4, pp. 35–38.
6. Илларионов Г.Ю., Сиденко К.С., Бочаров Л.Ю. Угроза из глубины: XXI век. Хабаровск: КГУП «Хабаровская краевая типография», 2011. 304 с. (Illarionov, G.Yu., Sidenko, K.S., and Bocharov, L.Yu., Ugroza iz glubiny: XXI vek (Threat from the Depth: 21st Century), Khabarovsk: KGUP Khabarovskaya kraevaya tipografiya, 2011.)
7. Белоусов И. Современные и перспективные необитаемые подводные аппараты ВМС США // Зарубежное военное обозрение. 2013. №5. С. 79–88. (Belousov, I., Modern and future unmanned autonomous vehicles in the US navy, Zarubezhnoe voennoe obozrenie, 2013, no. 5, pp. 79–88.)
8. Al-Khatib, H., Antonelli, G., Caffaz, A., Caiti, A., Casalino, G., de Jong, I.B., Duarte, H., Indiveri, G., Jesus, S., Kebkal, K., The widely scalable mobile underwater sonar technology (WiMUST) project: an overview, OCEANS 2015, IEEE, 2015, Genova.
9. Коваленко В.В., Корчак В.Ю., Чулков В.Л. Концепция и ключевые технологии подводного наблюдения в условиях сетецентрических войн // Фундаментальная и прикладная гидрофизика. 2011. Т. 4. № 3. С. 49-64. (Kovalenko, V.V., Korchak, V.Yu., and Chulkov, V.L., Concepts and key technologies of underwater surveillance systems in network-centric warfare, Fundamental'naya i prikladnaya gidrofizika, 2011, vol. 4, no. 3, pp. 49–64.)
10. Пешехонов В.Г., Брага Ю.А., Машошин А.И. Сетецентрический подход к решению проблемы освещения подводной обстановки в Арктике // Известия ЮФУ. Технические науки. 2012. № 3. С. 219–227. (Peshekhonov, V.G., Braga, Yu.A., and Mashoshin, A.I., Network centric approach to solving the underwater surveillance problem in the Arctic, Izvestiya UFU. Tehnicheskie nauki, 2012, no. 3, pp. 219–227.)
11. Машошин А.И., Скобелев П.О. Применение мультиагентных технологий для управления группой автономных необитаемых подводных аппаратов // Известия ЮФУ. Технические науки. 2016. №1 (174). С. 45–59. (Mashoshin, A.I., and Skobelev, P.O., Application of multiagent technology for managing a group of unmanned underwater vehicles, Izvestiya UFU. Tehnicheskie nauki, 2016, no. 1, pp. 45–59.)
12. Кебкал К.Г., Машошин А.И. Гидроакустические методы позиционирования автономных необитаемых подводных аппаратов // Гироскопия и навигация. 2016. Т. 24. №3 (94). С. 115–130. (Kebkal, K.G. and Mashoshin, A.I., AUV acoustic positioning methods, Gyroscopy and navigation, 2017, vol. 8, no. 1, pp. 80–89.)
13. Kilfoyle, D.B., Baggeroer, A.B., The State of the Art in Underwater Acoustic Telemetry, IEEE Journal of Oceanic Engineering, 2000, vol. 25, no. 1, pp. 4–27.
14. Domingo, M.C., An overview of the internet of underwater things, Journal of Network and Computer Applications, 2012, vol. 35, no. 6, pp. 1879–1890.
15. Song, H.C., Kuperman, W.A., Hodgkiss, W.S., Basin-scale time reversal communications, J. Acoust. Soc. Am, 2009, vol. 125, pp. 212–217.
16. Homer, J., Mareels, I., Bitmead, R.R., Wahlberg, B., Gustafsson, F., LMS estimation via structural detection, IEEE Trans. Signal Processing, 1998, vol. 46, pp. 2651–2663.
17. Lopez, M.J., Singer, A.C., A DFE coefficient placement algorithm for sparse reverberant channels, IEEE Transaction in Communications, 2001, vol. 49, issue 8, pp. 1334–1338.
18. Roy, S., Duman, T.M., McDonald, V., Error Rate Improvement in Underwater MIMO Communications Using Sparse Partial Response Equalization, Proc. IEEE Oceans Conf., 2006.
19. Stojanovic, M., Freitag, L., Johnson, M., Channel-Estimation-Based Adaptive Equalization of Underwater Acoustic Signals, Proc. IEEE Oceans Conf., 1999, Seattle, WA.
20. Weichang, L., Preisig, J.C., Estimation of Rapidly Time-Varying Sparse Channels, Proc. IEEE Oceans Conf., 2007, vol. 32, no. 4, pp. 927–939.
21. Sozer, E.M., Proakis, J.G., Blackmon, F., Iterative equalization and decoding techniques for shallow water acoustic channels, Proc. IEEE Oceans Conf., 2001, vol. 4, pp. 2191–2208.
22. Capellano, V., Performance improvements of a 50 km acoustic transmission through adaptive equalization and spatial diversity, Proc. IEEE Oceans Conf., 1997, vol. 1, pp. 569–573.
23. Roy, S., Space-Time Coding for Frequency Selective Fading Channels with Underwater Acoustic Communication Applications. Ph.D dissertation, Dept. Electrical Engineering, Arizona State University, 2006.
24. Douillard, C., Jezequell, M., Berrou, C., Pricart, A., Didier, P., Glavieux, A., Iterative Correction of Intersymbol Interference: Turbo-Equalization, European Transactions on Telecommunications, 1995, vol. 6, no. 5, pp. 507–511.
25. Mani, S., Duman, T.M., Hurski, P., Adaptive Coding/Modulation for Schallow-Water, Proc. 9th European Conference on underwater acoustics, 2008, Paris, France, vol. 2, pp. 471–476.
26. Blackmon, F., Sozer E., Proakis J., Iterative equalization, decoding, and soft diversity combining for underwater acoustic channels, Proc. IEEE Oceans Conf., 2002, vol. 4, pp. 2425–2428.
27. Mani, S., Adaptive Modulation Techniques for Underwater Acoustic Channels, M.S.Thesis, Dept. Electrical Engineering, Arizona State University, 2008.
28. Zhang, Z., Duman, T.M., Kurtas, E.M., Achievable Information Rates and Coding for MIMO Systems Over ISI Channels and Frequency-Selective Fading Channels, IEEE Transactions on Communications, 2004, vol. 52, no. 10, pp. 1698–1710.
29. Shental, O., Shental, N., Shamai, S., On the achievable information rates of two-dimensional channels with memory, Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2005, Adelaide, Australia.
30. Rice, J., McDonald, V., Adaptive Modulation for Undersea Acoustic Telemetry, Sea Technology, 1999, May.
31. Benson, A., Proakis, J., Stojanovic, M., Towards Robust Adaptive Acoustic Communications, Proc. IEEE Oceans Conf., 2000, vol. 2, pp. 1243–1249.
32. Kilfoyle, D.B., Preisig, J.C., Baggeroer, A.B., Spatial modulation experiments in the underwater acoustic channel, IEEE J. Ocean Eng., 2005, vol. 30, no. 2, pp. 406–415.
33. Song, H.C., Hodgkiss, W.S., Kuperman, W.A., Stevenson, M., Akal, T., Improvement of time reversal communications using adaptive channel equalizers, IEEE J. Ocean. Eng., 2006, vol. 2, no. 2, pp. 487–496.
34. Song, H.C., Hodgkiss, W.S, Kuperman, W.A., MIMO Time Reversal Communications, Proc. WUWNet’07, 2007, Montreal, Quebec, Canada, pp. 5–10.
35. Roy, S., Duman, T.M., McDonald, V., Proakis, J.G., High Rate Communication for underwater Acoustic Channels Using Multiple Transmitters and Space-Time Coding: Receiver Structures and Experimental Results, IEEE Journal of Oceanic Engineering, 2007, vol. 32, no. 3, pp. 663–688.
36. Roy, S., Duman, T.M., Ghazikhanian, L., McDonald, V., Proakis, J., Zeidler, J., Enhanced underwater acoustic communication performance using space-time coding and processing, Proc. IEEE Oceans Conf., 2004, vol. 1, pp. 26–33.
37. Nordenvaad, M.L., Oberg, T., Iterative Reception for Acoustic Underwater MIMO Communications, Proc. IEEE Oceans Conf., 2006.
38. Edelmann, G., Akal, T., Hodgkiss, W.S., Kim, S., Kuperman, W.A., Song, H., An initial demonstration of underwater acoustic communication using time reversal mirror, IEEE J. Ocean. Eng., 2002, vol. 27, pp. 602–609.
39. Silva, A., Jesus, S., Gomes, J., Barroso, V., Underwater acoustic communications using a virtual electronic time-reversal mirror approach, Proc. Fifth European Conference on Underwater Acoustics, 2000, pp. 531–536.
40. Rouseff, D., Jackson, D., Fox, W., Jones, C., Ritcey, J., Dowling, D., Underwater acoustic communications by passive-phase conjugation: Theory and experimental results, IEEE J. Ocean. Eng., 2001, vol. 26, pp. 821–831.
41. Derode, A., Roux, P., Robust Acoustic Time Reversal with High-Order Multiple Scattering, M. Phys. Rev. Lett., 1995, vol. 75, no 23, p. 4206.
42. Heidemann, J., Stojanovic, M., Zorzi, M., Underwater sensor networks: Applications, advances, and challenges, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, vol. 370, no. 1958, pp. 158–175.
43. Akyildiz, I.F., Pompili, D., Melodia, T., Underwater acoustic sensor networks: research challenges, Ad Hoc Networks, 2005, vol. 3, no. 3, pp. 257–279.
44. Lmai, S., Chitre, M., Laot, C., Houcke, S., Throughput-efficient super-TDMA MAC transmission schedules in ad hoc linear underwater acoustic networks, IEEE Journal of Oceanic Engineering, 2017, vol. 42, pp. 156–174.
45. Lmai, S., Chitre, M., Laot, C., Houcke, S., Throughput-Maximizing Transmission Schedules for Underwater Acoustic Multihop Grid Networks, IEEE Journal of Oceanic Engineering, 2015, vol. 40, pp. 853–863.
46. Diamant, R., Lampe, L., Spatial Reuse Time-Division Multiple Access for Broadcast Ad Hoc Underwater Acoustic Communication Networks, IEEE Journal of Oceanic Engineering, 2011, vol. 36, no. 2, pp. 172–185.
47. Kredo, K., Djukic, P., Mohapatra, P., STUMP: Exploiting Position Diversity in the Staggered TDMA Underwater MAC Protocol, Proc. of IEEE INFOCOM, 2009.
48. Chirdchoo, N., Soh, W.S., Chua, K.C., MU-Sync: A time synchronization protocol for underwater mobile networks, Proc. of the ACM International Workshop on Underwater Networks, 2008.
49. Knappe, S., Shah, V., Schwindt, P.D., Hollberg, L., Kitching, J., Liew, L., Moreland, J., A microfabricated atomic clock, Applied Physics Letters, 2004, vol. 85, no. 9, pp. 1460–1462.
50. Gardner, T., Collins, J.A., Advancements in high-performance timing for long term underwater experiments: A comparison of chip scale atomic clocks to traditional microprocessorcompensated crystal oscillators, Proc. IEEE Oceans Conf., 2011.
51. Kebkal, K.G., Kebkal, O.G., Glushko, E., Kebkal, V.K., Sebastiao, L., Pascoal, A., Gomes, J., Ribeiro, J., Silva, H., Ribeiro, M., Indivery, G., Underwater acoustic modems with integrated atomic clocks for one-way travel-time underwater vehicle positioning, Proc. Underwater Acoustics Conference and Exhibition (UACE), 2017.
52. Yackoski, J., Shen, C., UW-FLASHR: Achieving High Channel Utilization in a Time-based Acoustic MAC Protocol, Proc. Third ACM International Workshop on Underwater Networks (WuWNet), 2008.
53. Morozs, N., Mitchell, P.D., Zakharov, Y., TDA-MAC: TDMA Without Clock Synchronization in Underwater Acoustic Networks, IEEE Access., 2018, vol. 6, pp. 1091–1108.
54. Morozs, N., Mitchell, P.D., Zakharov, Y., Mourya, R., Petillot, Y.R., Gibney, T., Dragone, M., Sherlock, B., Neasham, J.A., Tsimenidis, C.C., Sayed, M.E., McConnell, A.C., Aracri, S., Stokes, A.A., Robust TDA-MAC for Practical Underwater Sensor Network Deployment: Les sons from USMART Sea Trials, Proc. The Thirteenth ACM International Conference on Underwater Networks and Systems (WUWNet-2018), 2018.
55. Morozs, N., Mitchell, P.D., Zakharov, Y., Unsynchronized dual-hop scheduling for practical data gathering in underwater sensor networks, Proc. IEEE International Conference on Underwater Communications and Networking (UComms 2018), 2018.
56. Cho, A.-R., Yun, C., Lim, Y.-K., Choi, Y., Asymmetric Propagation Delay-aware TDMA MAC protocol for mobile underwater acoustic sensor networks, Applied Sciences, 2018, vol. 8, p. 962.
57. Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function, IEEE Journal on Selected Areas in Communications, 2000, vol. 18, no. 3, pp. 535–547.
58. Nasipuri, Zhuang, J., Das, S.R., A multichannel CSMA MAC protocol for multihop wireless networks, Proc. IEEE Wireless Communications and Networking Conference (WCNC-1999), 1999, vol. 3, pp. 1402–1406.
59. Guerra, F., Casari, P., Zorzi, M., World ocean simulation system (WOSS): A simulation tool for underwater networks with realistic propagation modeling, Proc. Fourth ACM International Workshop on Underwater Networks (WUWNet’09), 2009, New York, NY, USA, pp. 4:1–4:8.
60. Roberts, L.G., ALOHA Packet System With and Without Slots and Capture, Computer Communications Review, 1975, vol. 5, no 2, pp. 28–42.
61. Peleato, B., Stojanovic, M., Distance Aware Collision Avoidance Protocol for Ad-Hoc Underwater Acoustic Sensor Networks, IEEE Communication Letters, 2007, pp. 1025–1027.
62. Guerra, F., Casari, P., Zorzi, M., MAC Protocols for Monitoring and Event Detection in Underwater Networks Employing a FH-BFSK Physical Layer, Acoustic Sensor Networks, IEEE Comm. Letters, 2007, vol. 11, no. 12, pp. 1025–1027.
63. Syed, A.A., Ye, W., Heidemann, J., Comparison and Evaluation of the T-Lohi MAC for Underwater Acoustic Sensor Networks, IEEE J. on Selected Areas in Communications, 2008, vol. 26, no. 9, pp. 1731–1743.
64. Chirdchoo, N., Soh, W.-S., Chua, K.C., Aloha-Based MAC Protocols with Collision Avoidance for Underwater Acoustic Networks, Proc. 26th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 2007, Anchorage, Alaska, USA.
65. Xie, P. et al., R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks, Proc. International Conference on Wireless Algorithms, Systems and Applications, 2007, Chicago, IL., pp. 187–198.
66. Molins, M., Stojanovic, M., Slotted FAMA: a MAC protocol for underwater acoustic networks, Proc. IEEE Oceans Conf., 2006.
67. Fullmer, C.L., Garcia-Luna-Aceves, J.J., Floor Acquisition Multiple Access (FAMA) for packet-radio networks, Proc. Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), 1995.
68. Garcia, M., Sendra, S., Atenas, M., Lloret, J., Underwater Wireless Ad-hoc Networks: a Survey. Mobile Ad hoc Networks: Current Status and Future Trends. Chapter: Underwater wireless ad-hoc networks: A survey, CRC Press, Taylor and Francis, 2011.
69. Rahman, W., Olesinski, Gburzynski, P., Controlled flooding in wireless ad-hoc networks, IEEE International Workshop on Wireless Ad-Hoc Networks, 2004, pp. 73–78.
70. Otnes, R., Asterjadhi, A., Casari, P., Goetz, M., Husøy, T., Nissen, I., Rimstad, K., van Walree, P., Zorzi, M. Underwater Acoustic Networking Techniques, Springer Briefs in Electrical and Computer Engineering, 2012. DOI: 10.1007/978‐3‐642‐25224‐2_1.
71. Cavin, D., Schiper, A., Probabilistic Broadcast for Flooding in Wireless Mobile Ad hoc Networks, Proc. Conf. Wireless Communications and Networking, 2003, vol. 2.
72. Fink M. Time Reversed Acoustics, Phys. Today, 1997, pp. 34–40.
73. Liang, W., Yu, H., Liu, L., Li, B., Che, C., Information-carrying based routing protocol for underwater acoustic sensor network, Proc. International Conf. on Mechatronics and Automation (ICMA), 2007, pp. 729–734.
74. Wahid, A., Dongkyun, K., Analyzing Routing Protocols for Underwater Wireless Sensor Networks, International J. of Communication Networks and Information Security (IJCNIS), 2010, vol. 2, no. 3, pp. 253–261.
75. Jornet, J.M., Stojanovic, M., Zorzi, M., Focused Beam Routing Protocol for Underwater Acoustic Networks, Proc. 3d ACM international workshop on Underwater Networks (WUWNet’08), 2008, New York, pp. 75–82.
76. Ayaz, M., Abdullah, A., Hop-by-Hop Dynamic Addressing Based (H2-DAB) Routing Protocol for Underwater Wireless Sensor Networks, Proc. International Conf. on Information and Multimedia Technology (ICIMT'09), 2009, pp. 436–441.
77. Basagni, S., Petrioli, C., Petroccia, R., Spaccini, D., Channel-aware routing for underwater wireless networks, Proc. IEEE Oceans Conf., 2012, pp. 1–9.
78. Rahman, R.H., Benson, C., Jiang, F., Frater, M., LOARP: A Low Overhead Routing Protocol for Underwater Acoustic Sensor Networks, J. of Networks, 2013, vol 8, no. 2, pp. 317–330.
79. Zhou, Z., Peng, Z., Cui, J.H., Shi, Z., Efficient Multipath Communication for Time-Critical Applications in Underwater Acoustic Sensor Networks, IEEE ACM Trans. on Networking, 2011, vol. 19, no. 1, pp. 28–41.
80. Toso, G., Masiero, R., Casari, P., Kebkal, O., Komar, M., Zorzi, M., Field experiments for Dynamic Source Routing: S2C EvoLogics modems run the SUN protocol using the DESERT Underwater libraries, Proc. IEEE Oceans Conf., 2012, pp. 1–10.
81. Domingo, M.C., Prior, R., A Distributed Clustering Scheme for Underwater Wireless Sensor Networks, IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007, pp. 1–5.
82. Vieira, L.F.M., Lee, U., Gerla, M., Phero-trail: a bio-inspired location service for mobile underwater sensor networks, IEEE J. on Selected Areas in Communications, 2010, vol. 28, no. 4, pp. 553–563.
83. Baggeroer, A., Koelsch, D.E., Heydt, K., Catipovic, J., DATS – a Digital Acoustic Telemetry System for Underwater Communications, Proc. IEEE Oceans Conf., 1981, pp. 55–60.
84. Coates, R.F.W., A deep-ocean penetrator telemetry system, IEEE J. Ocean. Eng., 1988, vol. 13, pp. 55–63.
85. Catipovic, J., Baggeroer, A.B., Von Der Heydt, K., Koelsch, D., Design and performance analysis of a digital acoustic telemetry system for the short range underwater channel, IEEE J. Ocean. Eng., Piscataway, NJ, USA: IEEE Operations Center, 1984, vol. OE-9, pp. 242–252.
86. Freitag, L.E., Merriam, J.S., Frye, D.E., Catipovic, J.A., A Long-term Deepwater Acoustic Telemetry Experiment, Proc. IEEE Oceans Conf., 1991, pp. 254–260.
87. Mackelburg, G.R., Acoustic data links for UUVs, Proc. IEEE Oceans Conf., 1991, pp. 1400–1406. 88. Scussel, K.F., Rice, J.A., Merriam, S., A new MFSK acoustic modem for operation in adverse underwater channels, Proc. IEEE Oceans Conf., 1997.
88. Howe, G.S., Hinton O.R., Adams, A.E., Holt, A.G.J., Acoustic burst transmission of high rate data through shallow underwater channels, Electronics Letters, Stevenage, UK: Michael Faraday House, 1992, vol. 28, no. 5, pp. 449–451.
89. Suzuki, M., Sasaki, T., Tsuchiya, T., Digital acoustic image transmission system for deep-sea research submersible, Proc. IEEE Oceans Conf., 1992, pp. 567–570.
90. Jones, J.C., DiMeglio, A., Wang, L.S., Coates, R.F.W, Tedeschi, A., Stoner, R.J., The design and testing of a DSP, half-duplex, vertical DPSK communication link, Proc. IEEE Oceans Conf., 1997, vol. 1, pp. 259–266.
91. Colavolpe, G., Raheli, R., Noncoherent sequence detection, IEEE Trans. On Commun. Syst., Piscataway, NJ, USA: IEEE Communications Society, 1999, vol. 47, no. 9, pp. 1376–1385.
92. Schober, R., Gerstacker, W.H., Huber, J.B., Adaptive linear equalization combined with noncoherent detection for MDPSK signals, IEEE Trans. on Commun. Syst., Piscataway, NJ, USA: IEEE Communications Society, 2000, vol. 48, no. 5, pp. 733–738.
93. Stojanovic, M., An Adaptive Algorithm for Differentially Coherent Detection in the Presence of Intersymbol Inteference, IEEE J. on Selected Areas in Communications, Piscataway, NJ, USA: IEEE Operations Center, 2005, vol. 23, no. 9, pp. 1884–1890.
94. EviNS Framework, Internet resource: https://github.com/okebkal/evins.git.
95. Kebkal, O.G., Kebkal, V.K., Kebkal, K.G., EviNS: Framework for development of underwater acoustic sensor networks and positioning systems, Proc. IEEE Oceans Conf., 2015.
96. Kebkal, O.G., Kebkal, K.G., Komar, M., Development of upper-layer protocols with S2CR acoustic modems emulator, Proc. Conf. on Underwater Communications: Channel Modelling and Validation (UCOMMS), 2012, Sestri Levante, Italy.
97. DTN2 manual page, 2015 (http://dtn.sourceforge.net/DTN2/doc/manual).
98. Delay-Tolerant Networking Research Group (DTNRG) (https://sites.google.com/site/dtnresgroup/home).
99. Kebkal, K.G., Bannasch, R., Sweep-spread carrier for underwater communication over acoustic channels with strong multipath propagation, J. Acoustical Society of America, 2002, vol. 112, no. 5, Pt 1, pp. 2043–2053.
100. Petrioli, C., Petroccia, R., Potter, J., Performance evaluation of underwater MAC protocols: From simulation to at-sea testing, Proc. IEEE Oceans Conf., 2011.
101. Masiero, R., Azad, S., Favaro, F., Petrani, M., Toso, G., Guerra, F., Casari, P., Zorzi, M., DESERT Underwater: an NSMiraclebased framework to DEsign, Simulate, Emulate and Realize Testbeds for Underwater network protocols, Proc. IEEE Oceans Conf., 2012.
102. Shannon, C.E. Communication in the presence of noise, Proc. IRE, 1949.
103. Kebkal, K.G., Kebkal, O.G., Glushko, E., Kebkal, V.K., Sebastiao, L., Pascoal, A., Gomes, J., Ribeiro, J., Silva, H., M.Ribeiro, M., Indivery, G., Underwater acoustic modems with integrated atomic clocks for one-way travel-time underwater vehicle positioning, Proc. Underwater Acoustics Conference and Exhibition (UACE), 2017.
104. Góis, P., Sreekantaswamy, N., Basavaraju, N., Rufino, M., Sebastião, L., Botelho, J., Gomes, J., Pascoal, A., Development and validation of Blue Ray, an optical modem for the MEDUSA class AUVs, Proc. 3rd Underwater Communications and Networking Conference (UCOMMS'16), Lerici, Italy, 2016.
105. Fair, N., Chave, A., Freitag, L., Preisig, J., White, S., Yoerger, D., Sonnichsen, F., Optical modem technology for seafloor observatories, Proc. IEEE Oceans Conf., 2006, pp. 1–6.
106. Sozer, E.M., Stojanovic, M., Proakis, J.G., Underwater acoustic networks, IEEE J. Ocean. Eng., 2000, vol. 25, no. 1, pp. 72–83.
107. Pompili, D., Melodia, T., Akyildiz, I.F., A CDMA-based medium access control for underwater acoustic sensor networks, IEEE Trans. Wireless Commun, 2009, vol. 8, no. 4, pp. 1899–1909.
108. Li, B., et al., MIMO-OFDM for High-Rate Underwater Acoustic Communications, IEEE J. Ocean Eng., 2009, vol. 34, no. 4, pp. 634–644.
109. Kebkal, K., Mashoshin, A., Yakovlev, S., Kebkal, O., Kebkal, V., Phase Estimation Error of a PSK Underwater Acoustic Signal in Presence of Multipath and Volume Scattering, Proceedings of 4th underwater communications networking conference (UComms’18), 28–30 August, 2018, Lerici, Italy.
Рецензия
Для цитирования:
Кебкал К.Г., Машошин А.И., Мороз Н.В. Пути решения проблем создания сетевой подводной связи и позиционирования. Гироскопия и навигация. 2019;27(2):106-135. https://doi.org/10.17285/0869-7035.2019.27.2.106-135
For citation:
Kebkal K.G., Mashoshin A.I., Morozs N.V. Solutions for Underwater Communication and Positioning Network Development. Giroskopiya i Navigatsiya. 2019;27(2):106-135. (In Russ.) https://doi.org/10.17285/0869-7035.2019.27.2.106-135



