Расширенное двухмерное пропорционально-дифференциальное командное наведение по линии визирования
https://doi.org/10.17285/0869-7035.2018.26.4.058-071
Аннотация
В статье рассматривается расширенное двухмерное (2D) пропорционально-дифференциальное командное наведение по линии визирования, которое позволяет избежать возникновения спиральной траектории движения противотанковой управляемой ракеты в плоскости, перпендикулярной линии визирования, или так называемой плоскости перспективы. Предложенный метод наведения повышает качество переходного процесса при выводе ракеты на линию визирования. Закон наведения работает как классический закон пропорционально-дифференциального регулирования в пределах небольшой заданной области вокруг линии визирования, а при выходе ракеты из этой области закон регулирования задействует дополнительные нелинейные компоненты, зависящие от производных координат ракеты в плоскости, перпендикулярной линии визирования. Доказана глобальная асимптотическая устойчивость системы наведения путем введения в рассмотрение особой положительно определенной функции Ляпунова. Результаты моделирования демонстрируют эффективность предложенного подхода. Закон наведения позволяет уменьшить влияние ближних граничных условий на радиус действия ракеты.
Об авторе
Б. Г. ПеневБолгария
Пенев Борислав Г. Доктор наук, доцент факультета оптоэлектроники и лазерной техники
Список литературы
1. Blakelock, J. H., Automatic control of aircraft and missiles, Wiley-Interscience, 1991.
2. Неупокоев Ф.К. Стрельба зенитными ракетами. М.: Военное издательство, 1991. (Neupokoev, F.K., Strel'ba zenitnymi raketami (Shooting with Anti-Aircraft Missiles), Moscow: Voennoe izdatel’stvo, 1991).
3. Siouris, G. M., Missile Guidance and Control Systems, New York: Springer-Verlag, 2004.
4. Shneydor, N. A., Missile Guidance and Pursuit: Kinematics, Dynamics and Control, Horwood Publishing, 1998.
5. Ha, I.-J. and Chong, S., Design of a CLOS guidance law via feedback linearization, IEEE Trans. Aerosp. Electron. Syst., 1992, vol. 28, no. 1, pp. 51–63.
6. Penev, B. G., Variant of a system for automatic control of antitank guided missile in polar coordinates, Proceedings of Conference “Weapons and military equipment of the year 2000”, Conference of the Military Scientific and Technological Institute of the Ministry of Defense, 18–20 December 1995, Sofia, 1995, vol. 1, pp. 54–56 (in Bulgarian).
7. Penev, B.G., Lashnev, A.T. and Iliev, I.Ya., Control of the vector of normal acceleration of antitank guided missile in pseudo-polar coordinates, Proceedings of Jubilee Conference ”120 years of the April Uprising” of the Higher Air Force School, Dolna Mitropoliya, 22–23 May 1996, 1996, vol. 1, pp. 336–342 (in Bulgarian).
8. Pastrick, H.L., Seltzer, S.M. and Warren, M.E., Guidance laws for short-range tactical missiles, Journal of Guidance, Control and Dynamics, 1981, vol. 4, no. 2, pp. 98–108.
9. Guerchet, P. and Estival, J.L., Line of sight guidance law by predictive functional control for high velocity short-range tactical missile, Proceedings of the European Control Conference, July 2–5, 1991, Grenoble, France, vol. 2, pp. 1759–1764.
10. Huang, J. and Lin, C.-F., A modified CLOS guidance law via right inversion, IEEE Trans. Aerosp. Electron. Syst., 1995, vol. 31, pp. 491–495.
11. Lin, C-M. and Hsu, C-F., Guidance law design by adaptive fuzzy sliding-mode control, Journal of Guidance, Control and Dynamics, 2002, vol. 25, no. 2, pp. 248–256.
12. Menon, P.K.A. and Duke, E.L., Time-optimal aircraft pursuit evasion with a weapon envelope constraint, Journal of Guidance, Control and Dynamics, 1992, vol. 15, no. 2, pp. 448–456.
13. Nobahari, H. and Pourtakdoust, S.H., Optimal fuzzy CLOS guidance law design using ant colony optimization, Lecture Notes in Computer Science, 2005, vol. 3777 LNCS, pp. 95–106.
14. Nobahari, H. and Pourtakdoust, S.H., An optimal-fuzzy two-phase CLOS guidance law design using ant colony optimization, Aeronautical Journal, 2007, vol. 111, no. 1124, pp. 621–636.
15. Yamasaki, T., Balakrishnan, S. N. and Takano, H., Modified command to line-of-sight intercept guidance for aircraft defense, Journal of Guidance, Control and Dynamics, 2013, vol. 36, no. 3, pp. 898–902.
16. Ratnoo, A. and Shima, T., Line of sight guidance for defending an aircraft, AIAA Guidance, Navigation, and Control Conference, August 2010, Toronto, Ontario, Canada, 2010.
17. Tsalik, R. and Shima, T., Inscribed angle guidance, Journal of Guidance, Control and Dynamics, 2015, vol. 38, no. 1, pp. 30–40.
18. Cho, N., Kim, Y. and Park, S., Three-dimensional nonlinear differential geometric path-following guidance law, Journal of Guidance, Control and Dynamics, 2015, vol. 38, no. 12, pp. 2366–2385.
19. Elhalwagy, Y.Z. and Tarbouchi, M., Fuzzy logic sliding mode control for command guidance law design, ISA Transactions, 2004, vol. 43, pp. 231–242.
20. Elhalwagy, Y. Z., Guidance law design using intelligent non-linear controller, 13th International Conference on Aerospace Sciences and Aviation Technology (ASAT- 13), May 26 – 28, 2009, Military Technical College, Kobry Elkobbah, Cairo, Egypt, 2009, Paper: ASAT-13-CT-32.
21. Sadeghinasab, E., Koofigar, H.R. and Ataei, M., Design of robust command to line-of-sight guidance law: a fuzzy adaptive approach, Journal of Engineering Science and Technology, 2016, vol. 11, no. 11, pp. 1528–1542.
22. Alrawi, A.A.A., Graovac, S., Ahmad, R.B. and Rahman, M.M., Modified guidance law based on a sliding mode controller for a missile guidance system, Tehnički vjesnik, 2016, vol. 23, no. 3, pp. 639–646.
23. Zaidi. H., Wu, P. and Bellahcene, A., Missile guidance law design via backstepping technique, International Journal of Engineering and Applied Sciences, 2016, vol. 3, no. 4, pp. 85–90.
24. Yanushevsky, R.T., Generalized missile guidance laws against maneuvering targets, Proceedings of 25th Congress of the International Council of the Aeronautical Sciences, Hamburg, Germany, 3–8 September 2006, vol. 5, pp. 3043–3050.
25. Balakrishnan, S.N., Stansbery, D.T., Evers, J.H. and Cloutier, J.R., Analytical guidance laws and integrated guidance/autopilot for homing missiles, Proceedings of IEEE International Conference on Control and Applications, 1993, vol. 1, pp. 27–32.
26. Balakrishnan, S.N., Analytical missile guidance laws with a time-varying transformation, Journal of Guidance, Control and Dynamics, 1996, vol. 19, no. 2, pp. 496–499.
27. Liu, X., Huang, W., Du, L., Lan, P. and Sun, Y., Three-dimensional integrated guidance and control for BTT aircraft constrained by terminal flight angles, Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015, 2015, Qingdao Haiqing Hotel, Qingdao, China, Session SatA04: Nonlinear Systems (I).
28. Levy, M., Shima, T. and Gutman, S., Linear quadratic integrated versus separated autopilotguidance design, Journal of Guidance, Control and Dynamics, 2013, vol. 36, no. 6, pp. 1722–1730.
29. White, B., Zbikowski, R. and Tsourdos, A., Direct intercept guidance using differential geometry concepts, AIAA Guidance, Navigation, and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences, 2005.
30. White, B., Zbikowski, R. and Tsourdos, A., Direct intercept guidance using differential geometry concepts, IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 3, pp. 899–919.
31. Li, D. and Poh, E.K., Nonlinear integrated steering and control of flight vehicles, Guidance, Navigation and Control Conference and Exhibit, 1998.
32. Balakrishnan, S.N., Tsourdos, A. and White, B.A., Advances in Missile Guidance, Control and Estimation, CRC Press, 2016.
33. Хруслов В.Н., Феофилов С.В., Горячев О.В., Лавит И.М., Индюхин А.Ф. Способ управления ракетой в полярной системе координат по скалярному радиусу // Гироскопия и навигация. 2014. №3. С. 92–102 (Khruslov, V.N., Feofilov, S.V., Goryachev, O.V., Lavit, I.M. and Indyukhin, A.F., Missile control in the polar coordinate system using a scalar radius, Gyroscopy and Navigation, 2015, vol. 6, no. 1, pp. 66–72).
34. Davies, D.R., Line of sight missile guidance, U.S. Patent 4750688, 1988.
35. Shipunov, A.G., Morozov, V.I. and Petrushin, V. V., Method of control signal forming for doublechannel rocket rotating around longitudinal axis, Russian Federation Patent RU 2511610 C1, 2014.
36. Gusev, A.V., Morozov, V.I., Nedosekin, I.A., Minakov, V.M. And Tarasov, V.I., Method of beam control over rolling missile and beam-controlled rolling missile, Russian Federation Patent RU 2460966 C1, 2011.
37. Mandić, S., Stojković, S., Milenković, D. and Milošević, M., Aerodynamic compensation of the modified guided anti-tank missile configuration, Scientific Technical Review, 2014, vol. 64, no. 1, pp. 3–12.
38. Pavic, M., Mandic, S., Cuk, D. and Pavkovic, B., A new type of flight simulator for manual command to line-of-sight guided missile, Optik – International Journal for Light and Electron Optics, 2014, vol. 125, no. 21, pp. 6579–6585.
39. Pontryagin, L.S. and Lohwater, A.J., Ordinary Differential Equations, Addison-Wesley Publishing Company, 1962.
40. Бесекерский В.А., Попов Е.П. Теория систем автоматического управления. СПб.: Профессия, 2003 (Besekerskiy, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo upravleniya (Theory of Automatic Control Systems), St.Petersburg: Professiya, 2003).
41. Khalil, H.K., Nonlinear Systems, 2nd ed., Prentice Hall, 1996.
Рецензия
Для цитирования:
Пенев Б. Расширенное двухмерное пропорционально-дифференциальное командное наведение по линии визирования. Гироскопия и навигация. 2018;26(4):58-71. https://doi.org/10.17285/0869-7035.2018.26.4.058-071
For citation:
Penev B. An Expanded Two-Dimensional Proportional–Derivative Command to Line-of-Sight Guidance Law. Giroskopiya i Navigatsiya. 2018;26(4):58-71. (In Russ.) https://doi.org/10.17285/0869-7035.2018.26.4.058-071



