Preview

Giroskopiya i Navigatsiya

Advanced search

Solution of aircraft navigation problem using MEMS IMU and ground radio sources.

https://doi.org/10.17285/0869-7035.2017.25.1.003-017

Abstract

Navigation of a small-sized controlled aircraft is discussed using integrated data from MEMS-based IMU and receiver of ground radio source signals within an integrated tightly-coupled orientation and navigation system (IONS). IONS algorithms and errors in orientation and navigation parameters are considered both during prestart IMU error calibration with external aiding over a limited time interval and during simulation of aircraft flight along a preset highly maneuvering path. Data in IONS are integrated using the extended Kalman filter. In simulation modeling of IONS functioning algorithms in Matlab (Simulink) we used data of bench tests of MEMS sensors developed by Elektropribor.

About the Authors

G. I. Emel’yantsev
Concern CSRI Elektropribor, JSC, St. Petersburg, Russia, ITMO University, St. Petersburg, Russia
Russian Federation


A. P. Stepanov
Concern CSRI Elektropribor, JSC, St. Petersburg, Russia, ITMO University, St. Petersburg, Russia
Russian Federation


B. A. Blazhnov
Concern CSRI Elektropribor, JSC, St. Petersburg, Russia.
Russian Federation


References

1. Peshekhonov V.G. Gyroscopic navigation systems: Current status and prospects. Gyroscopy and Navigation. 2011. Vol. 2. No. 3. P. 111–118.

2. Evstifeev M.I., Eliseev D.P., and Chelpanov I.B. Enhancing the mechanical resistance of micromechanical gyros. Gyroscopy and Navigation. 2015. Vol. 6. No. 2. P. 115–123.

3. Inertial Measurement Units on Micromechanical Sensors, IEEE A&E SYSTEMS MAGAZINE. OCTOBER, 2008.

4. http://www.elektropribor.spb.ru/rufrset.html.

5. http://www.isense.ru/rus/index.htm.

6. Mezentsev A.P., Frolov E.N., Klimkin M.Yu., and Mezentsev O.A. Development, production and test results for a medium-accuracy MEMS INS AIST-320 based on Coriolis vibratory gyro AIST-100. 14th St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, CSRI Elektropribor, 2007. P. 9–18.

7. Coffee J.R. and Maganty P. An integrated DGPS/INS navigation system for a ballistic missile: Design and flight test results. Navigation: Journal of The Institute of Navigation. 1996. Vol. 43. No. 3. P. 273–293.

8. http://www.military-informer.narod.ru/grad.html.

9. Gai E. Guiding munitions with a micromechanical INS/GPS system. 5th St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, CSRI Elektropribor, 1998.

10. Minor R.R. and Rowe D.W. Utilization of a magnetic sensor to compensate a MEMS-IMU/GPS and de-spin strapdown on rolling missiles, United States Patent № 6,208,936. Mar. 27, 2001.

11. Blazhnov B.A., Yemeliantsev G.I., Koshaev D.A., Semenov I.V., Stepanov А.P. et al. A Tightly Coupled Integrated Inertial Satellite System of Attitude and Navigation. 16th St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, CSRI Elektropribor, 2009. P. 182–190.

12. Vodicheva L.V., Alievskaya E.L., Koksharov E.A., and Parysheva Yu.V. Improving the accuracy of angular rate determination for spinning vehicles. Gyroscopy and Navigation. 2012. Vol. 3. No. 3. P. 159–168.

13. Zhbanov Yu.К., Alekhova Е.Yu., Petelin V.L., Slezkin L.N., and Tereshkin A.I. Scale factor correction of the strapdown angular rate pick-off of the fast rotating object. 18th St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, CSRI Elektropribor, 2011. P. 113–114.

14. Raspopov V.Ya. Strapdown inertial navigation system for rotating flying vehicles. 20th St. Petersburg International Conference on Integrated Navigation Systems. St. Petersburg, CSRI Elektropribor, 2013.

15. Van der Velde W., Cafarella J., Tseng H.-W., Dimos G., and Upadhyay T. GPS-based measurement of roll rate and roll angle of spinning platforms, US Patent № US2010/0117894 15.05.2010.

16. Emel’yatsev G.I. and Stepanov A.P. Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated Inertial-Satellite Orientation and Navigation Systems). St. Petersburg: Concern CSRI Elektropribor, 2016.

17. Veremeenko K.K., Zheltov S.Yu., et al., Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatov (Modern Information Technologies in Problems of Navigation and Guidance of Maneuverable Unmanned Aerial Vehicles), Krasil’shchikov M.N., Sebryakov G.G. Eds. Moscow: Fizmatlit, 2009.

18. Layh T. and Gebre-Egziabher D. A fault-tolerant integrated navigation system architecture for UAVs. Proceedings of the 2015 International Technical Meeting. ION ITM 2015. Danna Point, California, January, 6-28, 2015. P. 702–712.

19. Borsoev V.A., Galeev R.G., Grebennikov A.V., and Kondrat’ev A.S. Using GLONASS/GPS pseudolites in aircraft landing systems. Nauchnyi vestnik MGTU GA. 2011. No. 164. P. 17–23.


Review

For citations:


Emel’yantsev G.I., Stepanov A.P., Blazhnov B.A. Solution of aircraft navigation problem using MEMS IMU and ground radio sources. Giroskopiya i Navigatsiya. 2017;25(1):3-17. (In Russ.) https://doi.org/10.17285/0869-7035.2017.25.1.003-017

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)