Computer vision system as an additional aid in car navigation
https://doi.org/10.17285/0869-7035.2017.25.1.049-063
Abstract
We focus on car navigation method using computer vision system and digital road map. Computer vision system installed onboard the car serves as an additional source of navigation information. It is used to determine the vehicle lateral deviation relative to the road center, range and bearing to the intersection center. Algorithm generating these parameters is described with account for the topology and parameters of roads presented in the road map. Accuracy of lateral deviation and range measurements is estimated using real data.
About the Authors
S. B. BerkovichRussian Federation
N. I. Kotov
Russian Federation
A. S. Lychagov
Russian Federation
N. V. Panokin
Russian Federation
R. N. Sadekov
Russian Federation
A. V. Sholokhov
Russian Federation
References
1. Oh S.M., Tariq S., Walker B., and Dellaert F. Map-based priors for localization. IROS. 2004. P. 1–6.
2. Google Self-Driving Car Project. Main page. http://www.google.com/selfdrivingcar/.
3. Velodyne lidar. Main page. http://www.velodynelidar.com.
4. Dmitriev S.P., Stepanov O.A., Rivkin B.S., Koshaev D.A., and Chang D. Optimal solution to car navigation problem using road map. Giroskopiya i navigatsiya. 2000. No. 2 (29). P. 57.
5. Ignacio P. and Miguel-Angel S. Visual odometry and map fusion for GPS navigation assistance. IEEE International Symposium on Industrial Electronics. 2011. P. 832–837.
6. Toropov A.B. and Stepanov О.А. Nonlinear filtering for map-aided navigation. Part 1. An overview of algorithms. Gyroscopy and Navigation. 2015. No. 4. P. 324–338.
7. Toropov A.B. and Stepanov О.А. Nonlinear filtering for map-aided navigation. Part 2. Trends in the algorithm development. Gyroscopy and Navigation. 2016. No. 1. P. 82–90.
8. Berkovitch S.B., Kotov N.I., Sholokhov A.V., Sadekov R.N. et al. Using digital road maps for autonomous correction of ground navigation systems. Trudy FGUP NPTs AP. Sistemy i pribory upravleniya. 2008. No. 2. P. 87–95.
9. Davidson P. Application of particle filters to map-matching algorithm. 17th International Conference on Integrated Navigation Systems. St. Petersburg, Russia, 2010. P. 303–308.
10. Brubaker M.A., Geiger A., and Urtasun R. Map-based probabilistic visual self-localization. PAMI. 2016 IEEE Conference. 2016.
11. Stockman G. and Shapiro L.G. Computer Vision.
12. Forsyth D.A. and Ponce J. Computer Vision: A Modern Approach.
13. Sadekov R.N. Using computer vision methods for navigation of cars and ground vehicles. Giroskopiya i navigatsiya. 2015. No. 2. P. 58–66.
14. Shiho T., Kenichi Y., Toshio I., and Takenao O. Vehicle detection based on perspective transformation using rear-view camera. International journal of vehicular technology. 2011. Article ID 279739. P. 9. DOI: 10.1155/2011/279739.
15. Chien-Chuan Lin and Ming-Shi Wang. A vision based top-view transformation model for a vehicle parking assistant. 2012. P. 1–16. DOI:10.3390/s120404431.
16. Barber D. Bayesian Reasoning and Machine Learning, 2015.
17. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 1. Introduction to the Estimation Theory). St. Petersburg: CSRI Elektropribor, 2009.
18. OpenCV. Main page. http://www.opencv.org.
19. Fritsch J., Kuehl T., and Geiger A. A new performance measure and evaluation benchmark for road detection algorithms. PAMI. 2013 IEEE Conference.
20. Open Street map. Main page. http://www.openstreetmap.org.
Review
For citations:
Berkovich S.B., Kotov N.I., Lychagov A.S., Panokin N.V., Sadekov R.N., Sholokhov A.V. Computer vision system as an additional aid in car navigation. Giroskopiya i Navigatsiya. 2017;25(1):49-63. (In Russ.) https://doi.org/10.17285/0869-7035.2017.25.1.049-063



