Design of digital controllers of gyroscopic command devices
https://doi.org/10.17285/0869-7035.2017.25.1.108-118
Abstract
A method for designing the digital controllers of command devices based on two-step optimization is proposed. An automated CAD workplace is applied as a design toolkit. The developed algorithms and their program implementation demonstrate large quality improvement and decrease in labor costs in designing digital controllers for gyrodevices. The developed method can be applied to a wide class of automatic control systems with resonance properties.
About the Authors
R. I. Sol’nitsevRussian Federation
A. I. Karimov
Russian Federation
T. I. Karimov
Russian Federation
References
1. Aleksandrov Yu.S., Aref’ev V.P., Artem’ev О.А., Vinogradov M.A., Zelinskii V.A., Kostyrev V.M., Kucherkov, S.G., Smirnov A.M., and Sorokin A.V. Precision complex of command devices of the inertial control system for Briz-M booster based on gyrodevices with gas support. Giroskopiya i navigatsiya. 2000. No. 4. P. 11–17.
2. Dishel’ V.D. Inertial-satellite technologies for control systems of rocket and space complexes. T-Comm. 2008. No. 2. P. 31–34.
3. Nikolaenko А.А. and Kokoshkin R.N. On using gas dynamic supports in gyroscopy. Izvestiya TulGU. Tekhnicheskie nauki. 2012. No. 7. P. 127–132.
4. Fedorov S.M. On dynamics of automatic sampling control systems with conservative elements. Izv. AN SSSR. Tekhnicheskaya kibernetika. 1964. No. 5.
5. Besekerskii V.A. and Fabrikant E.A. Dinamicheskii sintez sistem giroskopicheskoi stabilizatsii (Dynamic Synthesis of Gyrostabilization Systems). Leningrad: Sudostroenie, 1968.
6. Sol’nitsev R.I. Osnovy avtomatizatsii proektirovaniya girosistem (Foundations of Automation of Gyrosystem Design). Moscow: Vysshaya shkola, 1985.
7. Astrom K.J., Hagglund T., Hang C.C., and Ho W.K. Automatic tuning and adaptation for PID controllers – a survey. Control Engineering Practice. 1993. Vol. 1. No. 4. P. 699–714.
8. Bandyopadhyay B., Unbehauen H., and Patre B.M. A new algorithm for compensator design for higher-order system via reduced model. Automatica. 1998. Vol. 34. No. 7. P. 917–920.
9. Control System Toolbox. MathWorks website. URL: https://www.mathworks.com/products /control.html.
10. Sol’nitsev R.I., Karimov A.I., Karimov T.I., Butusov D.N., Mkrtychyan A.R., and Yakimov-skii D.O. Automated workplace of a designer of digital controllers of command devices. Infor-matsionno-upravlyayutschie sistemy. 2015. No. 6. P. 66–70.
11. Sol’nitsev R.I., Karimov A.I., Karimov T.I., and Butusov D.N. Design of digital controllers us-ing delat operator. Izv. SPbGETU LETI. 2015. No. 9. P. 25–30.
12. Karimov T.I., Butusov D.N., and Karimov A.I. Criterion of applicability of delta operator in synthesis of sampled-data system in state space. Fundamental’nye issledovaniya. 2014. No. 12–9. P. 1889–1893.
Review
For citations:
Sol’nitsev R.I., Karimov A.I., Karimov T.I. Design of digital controllers of gyroscopic command devices. Giroskopiya i Navigatsiya. 2017;25(1):108-118. (In Russ.) https://doi.org/10.17285/0869-7035.2017.25.1.108-118



