Adjustment of PID-controller in Fiber-Optic Gyro Feedback Loop
https://doi.org/10.17285/0869-7035.2017.25.1.119-127
Abstract
Functioning of closed-loop FOG is presented. Block diagram of FOG regulation circuit is given, and sources of nonlinear distortions of FOG regulation circuit elements are described. A method to analyze the regulation circuit of a closed-loop FOG is proposed for adjustment of PID-controller that does not require complex and high precision test equipment. Target function of regulation is set, and coefficients of PID-controller are selected optimal for this target function and certain FOG.
About the Authors
D. A. PogorelayaRussian Federation
M. A. Smolovik
Russian Federation
S. A. Volkovskiy
Russian Federation
M. A. Mikheev
Russian Federation
A. S. Aleynik
Russian Federation
V. E. Strigalev
Russian Federation
References
1. Meshkovsky I.K., Strigalev V.E., Deineka G.B., Peshekhonov V.G., Volynsky D.V., and Untilov, A.A. Three-axis fiber-optic gyroscope: Development and test results. Gyroscopy and Navigation, 2011. Vol. 2. No. 4. P. 208–213.
2. Volkovskiy S.A., Aleynik A.S., Nikitenko A.N., Smolovik M.A., and Pogorelaya D.A. Evaluation method for parasitic effects of the electro-optical modulator in a fiber optic gyroscope. Journal of Information Technologies, Mechanics and Optics. 2016. Vol. 16. No. 5 (105). P. 780–786.
3. Aleinik A.S., Deineka I.G., Smolovik M.A., Neforosnyi S.T., and Rupasov A.V. Compensation of excess RIN in fiber-optic gyro. Gyroscopy and Navigation. 2016. Vol. 7. No. 3. P. 214–222.
4. Pavlath G.A. Closed-loop fiber optic gyros. Proc. SPIE 2837, Fiber Optic Gyros: 20th Anniversary Conference, 46. 1996. P. 46–60.
5. Bergh R.A. Simplified control theory for closed-loop fiber-optic gyroscopes. Proc. SPIE 1795, Fiber Optic and Laser Sensors X, 126. 1993. P. 126–134.
6. Merlo S., Norgia M., and Donati S. Fiber Gyroscope Principles. Handbook of Fibre Optic Sensing Technology. López-Higuera J.M., Ed. John Wiley & Sons Ltd, 2000.
7. Lefevre Н.С. Fiber Optic Gyroscope. London: Artech House, 2014.
8. Ishibashi C., Ye J., and Hall J.L. Analysis/reduction of residual amplitude modulation in phase/frequency modulation by an EOM. Quantum Electronics and Laser Science Conference. Long Beach, CA, USA, 2002. P. 91–92.
9. Pogorelaya D.A., Smolovik M.A., Strigalev V.E., Aleynik A.S., and Deyneka I.G. An investigation of the influence of residual amplitude modulation in phase electro-optic modulator on the signal of fiber-optic gyroscope. J. Phys.: Conf. Ser. 2016. Vol. 735. No. 1 (012040). P. 1–5.
10. Denisenko V.V. Komp’yuternoe upravlenie tekhnologicheskim protsessom, experimentom, oborudovaniem (Computerized Control of Technological Process, Experiment, Equipment). Мoscow: Goryachaya liniya-Telekom, 2014.
11. Gorbunov V.M. Teoriya prinyatia reshenii (Decision-making theory. A manual). Tomsk, 2010.
Review
For citations:
Pogorelaya D.A., Smolovik M.A., Volkovskiy S.A., Mikheev M.A., Aleynik A.S., Strigalev V.E. Adjustment of PID-controller in Fiber-Optic Gyro Feedback Loop. Giroskopiya i Navigatsiya. 2017;25(1):119-127. (In Russ.) https://doi.org/10.17285/0869-7035.2017.25.1.119-127



