Preview

Gyroscopy and Navigation

Advanced search

Electrostatic Accelerometers for Space Applications: Modern State and Prospects of Development

https://doi.org/10.17285/0869-7035.0088

Abstract

The paper presents an overview of electrostatic accelerometers designed for various space projects. Engineering solutions aimed at high accuracy of measurements are described. Applications and development trends of electrostatic accelerometers, as well as the ways to improve their operation performance are discussed.

About the Authors

A. A. Krasnov
Concern CSRI Elektropribor, JSC
Russian Federation

Saint Petersburg



V. G. Rozentsvein
Concern CSRI Elektropribor, JSC
Russian Federation

Saint Petersburg



References

1. Toubou, P., Metris, G., Selig, H., Le Traon, O., Bresson, A., Zahzam, N., Christophe, B., Rodrique, M., Gravitation and Geodesy with Inertial Sensors, from Ground to Space, Aerospace Lab., 2016, issue 12, doi:1012762/2016/AL12-11.

2. Touboul, P., Foulon, B., Willemeno, E., Electrostatic space accelerometers for present and future missions, Acta Astronautica, 1999, vol. 45, no. 10, pp. 605–617.

3. Lange, B., The Drag-Free Satellite, AIAAJ, 1964, 2, 1590–1606.

4. Lange, W.G., Dietrich, R.W., The MESA accelerometer for space application, NTRS, 1990, 14, 1–28.

5. Bruinsma, S., Tamagnan, D., Biancale, R., Atmospheric densities derived from CHAMP/STAR accelerometer observations, Planetary and Space Science, 2004, 52, 297–312.

6. De Bra, D.B., Disturbance compensation system design, APL Tech. Dig., 1973, 12, 14–26.

7. A satellite freed of all but gravitational forces: TRIAD-I, J. Spacecr. Rockets, Sept. 1974, vol. 11, no. 9, pp. 637–644.

8. Moe, K., De Bra, D.B., Van Patten, R.A., Moe, M.M., Oelker, G., Ruggera, M.B., Jr., Exospheric density measurements from the drag-free satellite Triad, J. Geophys. Res., 1976, 81, 3753–3761.

9. Dassoulas, J., The TRIAD spacecraft, APL Technical Digest, 1973, , 1973, vol. 12, no. 2.

10. Beaussier, J., Mainguy, A.M., Olivero, A., Rolland, R., In orbit performance of the Cactus accelerometer (D5B spacecraft), Acta Astronaut., 1977, 4, 1085–1102.

11. Bouttes, J., Delattre, M., The Cactus accelerometer in orbit, Sci. Tech., 1977, 17–21.

12. Boudon, Y., Barlier, F., Bernard, A., Juillerat, R., Mainguy, A.M., and Walch, J.J., Synthese des resultants en vol de l’accelerometre CACTUS pour des accelerations inferieures a 10–9g, Recherche Aerospatiale, 1978, no. 6.

13. Touboul, P., Foulon, B., ASTRE Accelerometer: Verification tests in Drop Tower Bremen, Proceedings of the Drop Tower Days, Bremen, Germany, 10 July 1996. ONERA-T AP-96-124.

14. Touboul, P., Foulon, B., Christophe, B., Marque, J.P., CHAMP, GRACE, GOCE instruments and beyond. Geodesy for Planet Earth, Springer: Berlin, Germany, 2012, pp. 215–221.

15. Современные методы и средства измерения параметров гравитационного поля Земли. Под общ. ред. Пешехонова В.Г., науч. ред. Степанов О.А. СПб.: ГНЦ РФ АО «Концерн «Электроприбор», 2017. 390 с.

16. CHAMP – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/g/grace.

17. Touboul, P., Foulon, B., LeClerc, G.M., STAR, The Accelerometer of the Geodesic Mission CHAMP, Proceedings of the 49th IAF Congress, Melbourne, Australia, 1998, IAF-98-B.3.07.

18. Ultra-Sensitive Accelerometry and Space Projects. URL: http://www.onera.fr/dmphen/ultra-sensitive-accelerometry/earth-planets-observation.php.

19. Oberndorfer, Н., Miiller, J., CHAMP Accelerometer and Star Sensor Data Combination, Springer-Verlag, Berlin, Heidelberg, 2003.

20. Touboul, P., Willemenot, E., Foulon, B., Josselin, V., Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution, Bollettino Di Geofisica Ed Applicata, 1999, vol. 40, no. 3–4, pp. 321–327.

21. Touboul, P., Foulon, B., Space accelerometer development and drop tower experiments, Space Forum, 1998, vol. 4, pp. 145–165.

22. GRACE – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/g/grace.

23. Foulon, B., Christophe, B., Bidel, Y., Two Decades of electrostatic accelerometers for space geodesy: past or future?, Proceedings of IAC 2011 (62nd International Astronautical Congress), Cape Town, South Africa, 2011, paper: IAC-11-B1.3.4.

24. GRACE-FO – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/g/grace-fo.

25. Boulanger, D., Christophe, B., Foulon, B., Lebat, V., Liorzou, F., Perrot, E., Design update and characteristics improvement of the electrostatic accelerometer for the GRACE Follow-on mission, Joint GSTM (GRACE Science Team Meeting)/SPP Final Colloquium, 17. Sept., 2012, GFZ, Potsdam, Germany.

26. Christophe, B., Foulon, B., Liorzou, F., Lebat, V., Boulanger, D., Perrot, E., Huynh, P.-A., Development status of the GRACE Follow-On accelerometer and first results of the Engineering Model testing, Proceedings of the GSTM (GRACE Science Team Meetring), Potsdam, Germany, Sept. 29 – Oct. 1, 2014. URL: https://media.gfz-potsdam.de/gfz/sec12/GSTM-2014/GSTM2014-A2.zip].

27. Amann, M., Gross, M., Thamm, H., The GRACE FOLLOW-ON quiet electrical power system, E3S Web of Conferences, 2017, 16, 13011, doi: 1051/e3sconf/20171613011.ESP2016.

28. Peidou, A., Pagiatakis, S., Gravity gradiometry with GRACE space missions: New opportunities for the geosciences, Journal of Geophysical. Research: Solid Earth, 2019, 124, 9130–9147, https://doi.org/10.1029/2018JB016382.

29. Peresty, R., Chvojka, M., Fedosov, V., Use of the highly sensitive electrostatic accelerometer for orbit perturbation effects investigation on board of LEO spacecraft, Proceedings of the 61st IAC (International Astronautical Congress), Prague, Czech Republic, Sept. 27 – Oct. 1, 2010, IAC-10. B1.3.2.

30. SWARM – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/s/swarm.

31. LISA Pathfinder – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/l/lisa-pathfinder.

32. Armano, M., Audley, H., Auger, G., Baird, J.T., Bassan, M., Binetruy, P., Born, M., et. all., Sub-Femto-gFree Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results, PRL116, 231101, Physical Review Letters, 2016.

33. Gerndt, R., Fichte, W., and the LPF/DFACS Team, LISA Technology Package (LTP) System Design and Operation, 6th International LISA Symposium, Greenbelt, MD, USA, June 19–23, 2006.

34. McNamara, P., Racca, G., Introduction to LISA Pathfinder, URL: https://lisa.nasa.gov/archive2011/Documentation/LISA-LPF-RP-0002_v1.1.pdf.

35. Inertial Sensor Head shaken but not disturbed, ESA, Dec. 12, 2013. URL: http://sci.esa.int/lisa-pathfinder/53349-inertial-sensor-head-shaken-but-not-disturbed.

36. Sumner, T., Shaul, D., Schulte, M., Waschke, S., Hollington, D., Araújo, H., LISA and LISA Pathfinder Charging, Classical and Quantum Gravity, 2009, 26(9): 094006.

37. Hollington, D., Baird, J., Sumner, T., Wass, P., Characterising and Testing Deep UV LEDs for Use in Space Applications, arXiv:1508.00812v1 [astro-ph.IM], 4 Aug. 2015.

38. Optical bench of LISA Pathfinder, ESA, March 11, 2015, URL: http://www.esa/int/spaceinimaghes/Images/2015/03/Optical-bench-of-LISAPathfinder.

39. LISA Pathfinder – A Technology Experiment in Preparation of the Gravitational Wave Observatory eLISA, DLR, 2015, URL: http://www.dlr.de/rd/en/desktopdefault.aspx/tabid-2448/3635_read-5451.

40. Lenoira, B., Lévya, A., Foulona, B., Lamineb, B., Christophea, B., Reynaudb, S., Electrostatic accelerometer with bias rejection for gravitation and Solar System physics, Adv. Space Res., 2011, 48 (7): 1248–1257, doi:10.1016/j.asr.2011.06.005.

41. Christophe, B., Foulon, B., Liorzou, F., Lebat, V., Boulanger, D., Huynh, P-A., Zahzam, N., Bidel, Y., Bresson, A., Status of Development of the Future Accelerometers for Next Generation Gravity, International Association of Geodesy Symposia, August 2018, pp.1-5, doi: 10.1007/1345_2018_42.

42. Lenoira, B., Christophea, B., Reynaudb, S., Unbiased acceleration measurements with an electrostatic accelerometer on a rotating platform, Advances in Space Research, 2012, 51, 188–197, doi: 10.1016/j.asr.2012.08.012 6 January 2013.

43. Campergue, G., Gouhier, R., Horriere, D., Thiriot, A., Machine for ultrasonic abrasion machining, US patent 4934103, 1990.

44. Huynh, P.-A., Liorzou, F., Christophe, B., Foulon, B., Boulanger, D., Status of GAP: an electrostatic accelerometer for interplanetary fundamental physics, 65th International Astronautical Congress, Toronto, Canada. IAC-14-A2.1.1/ January 2014.

45. Gendre, D., Josselin, V., Dussy, S., High-performance accelerometer for on-orbit spacecraft autonomy, Conference Paper, August 2004, doi: 10.2514/6.2004-5432.

46. Gao Fen., Zhou Ze-Bing, Luo Jun, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett., 2011, 28, 080401.

47. Yanzheng Bai, Zhuxi Li, Ming Hu, Li Liu, Shaobo Qu, Dingyin Tan, Haibo Tu, Shuchao Wu, Hang Yin, Hongyin Li, Zebing Zhou, Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST, Sensors, 2017, 17, 1943.

48. Sheng-Guo Guan, L. Tu, Ze-bing Zhou, Jun Luo, Proposal for testing non-Newtonian gravitational force in space, Jpn. Soc. Microgravity Appl., 2007, 24, 86–90.

49. Fengtian Han, Tianyi Liu Linlin Li, Qiuping Wu, Design and Fabrication of Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle, Sensor, 2016, 16, 1262, doi:10.3390/s16081262.

50. Jun Luo, Li-Sheng Chen, Hui-Zong Duan, Yun-Gui Gong, Shoucun Hu, Jianghui Ji, et all., Tian-Qin: A space-borne gravitational wave detector Class, Quantum Gravity, 2016, 33, 035010.

51. Lin Cai, Zebing Zhou, Houtse Hsu, Fang Gao, et.all., Analytical error analysis for satellite gravity field determination based on two-dimensional Fourier method, J. Geod., 2013, 87, 417–426.

52. Yanzheng Bai, Zebing Zhou, Hai-bo Tu, Shu-chao Wu, et all., Capacitive position measurement for high-precision space inertial sensor, Front. Phys. China, 2009, 4, 205–208.

53. Li, G., Wu, S.C., Zebing Zhou, Yanzheng Bai, Hu Ming, Jeff Luo, Design and validation of a high-voltage levitation circuit for electrostatic accelerometers, Review of scientific instruments, 2013, 84, 125004.

54. Honguin Li, Yanzheng Bai, Hu Ming, Yingxin Luo, Zebing Zhou, A novel controller design for the next generation space electrostatic accelerometer based on disturbance observation and rejection, Sensors, 2017, 17, 21.

55. Li Liu, Yanzheng Bai, Zebing Zhou, H. Yin, D.Y. Tan, Jeff Luo, Measurement of the effect of a thin discharging wire for an electrostatic inertial sensor with a high-quality-factor pendulum, Class Quantum Gravity, 2012, 29, 055010.

56. Zhou, Z.B., Gao, S.W., Luo, J., Torsion pendulum for the performance test of the inertial sensor for ASTROD-I, Class. Quantum Gravity, 2005, 22, pp. 537–542.

57. Tu, H.B., Yanzheng Bai, Zebing Zhou, Li Liu, Lin Cai, Jeff Luo, Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Class Quantum Gravity, 2010, 27, 205016.

58. Yanzheng Bai, L. Fang, Jeff Luo, H. Yin, Zebing Zhou, Improving the measurement sensitivity of angular deflection of a torsion pendulum by an electrostatic spring, Class Quantum Gravity, 2015, 32, 175018.

59. Shao Bo Qu, Xiao-Mei Xia, Yanzheng Bai, Shu-Chao Wu, Zebing Zhou, B., Self-calibration method of the bias of a space electrostatic accelerometer, Rev. Sci. Instrum, 2016, 87, 114502.

60. Ciani, G., Chilton, A., Apple, S., Olatunde, T., Aitken, M., Mueller, G., Conklin, J., A New Torsion Pendulum for Gravitational Reference Sensor Technology Development, arXiv:1701.08911v2 [physics. ins-det], 15 Jun. 2017.

61. Liu, L., Ye, X., Wu, C., Yanzheng Ba, Ze-bing Zhou, A low-frequency vibration insensitive pendulum bench based on translation-tilt compensation in measuring the performances of inertial sensors, Class Quantum Gravity, 2015, 32, 195016.

62. Hang Yin, Yanzheng Bai, Ming Hu, Li Liu, Jun Luo, D.Y. Tan, Hsien-Chi Yeh, Zebing Zhou, Measurements of temporal and spatial variation of surface potential using a torsion pendulum and a scanning conducting probe, Phys. Rev. D, 2014, 90, 122001.

63. Yongkang Zhang, Wenbo Dong, Wei Liu, Shimeng Lv, Zongfeng Li, Yang Yang, Verification of the Microgravity Active Vibration Isolation System based on Air Floating Platform and Parabolic Flight [J], Microgravity Science and Technology, 2017, 29(6), 415–426.

64. Wenbo Dong, Wenxiang Duan, Wei Liu, Yongkang Zhang, Microgravity disturbance analysis on Chinese space laboratory, npj Microgravity, 2019.

65. Wei Liu, Yang Gao, Wenbo Dong, Zongfeng Li, Flight Test Results of the Microgravity Active Vibration Isolation System in China’s Tianzhou-1 Mission, Microgravity Science and Technology, 2018, 30: 995–1009, https://doi.org/10.1007/s12217-018-9659-9.

66. Toda, R., Takeda, N., Murakoshi, T., Nakamura, S, Esashi, M., Electrostatically levitated spherical 3-axis accelerometer, Proceedings of the IEEE 15th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 20–24 January 2002, pp. 710–713.

67. Murakoshi, T., Endo, Y., Fukatsu, K., Nakamura, S., Esashi, M., Electrostatically levitated ring-shaped rotational-gyro/accelerometer, Jpn. J. Appl. Phys., 2003, 42: 2468–2472, doi: 10.1143/JJAP.42.2468.

68. Fengtian Han, Boqian Sun, Linlin Li, Gaoyin Ma, A sensitive three-axis micromachined accelerometer based on an electrostatically suspended proof mass, Conference Paper,· November 2013, doi: 10.1109/ICSENS.2013.6688167.

69. Yonggang Yin, Boqian Sun, Fengtian Han, Self-Locking Avoidance and Stiffness Compensation of a Three-Axis Micromachined Electrostatically Suspended Accelerometer, Sensors (Basel), 2016, 16(5): 711, doi: 10.3390/s16050711 PMCID: PMC4883402 PMID: 27213376.

70. Ma, G.Y., Feng Tian Han, You, P.C., Zhang, L., Yan, X.J., Experimental study of a low-g micromachined electrostatically suspended accelerometer for space applications, Microsyst. Technol., 2015, 21: 29–39, doi: 10.1007/s00542-013-1928-3.

71. Microscope – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/m/microscope.

72. Touboul, P., Métris, G., Lebat, V., Robert, A., The MICROSCOPE experiment, ready for in-orbit test of the equivalence principle, Class Quantum Grav., 2012, 29, 184010.

73. Rodrigues, M., Touboul, P., Chhun, R., Lioorzou, F., Metris, G., MICROSCOPE a micro-satellite for a major corner stone in fundamental physics, from qualification to launch. Small Satellites, Systems and Services Symposium, 2016, LA VALETTE, Malta.

74. Chhun, R., Touboul, P., Lebat, V., Two cylindrical masses in orbit for the test of the equivalence principle, Relativity in Fundamental Astronomy Proceedings IAU Symposium, 2009, no. 261, International Astronomical Union, 2010, doi:10.1017/S174392130999069X.

75. Nobili, A.M., Anselmi, A., Testing the Equivalence Principle in space after MICROSCOPE, arXiv: 1803.03313v1 [gr-gc], 8 Mar. 2018.

76. Hudson, D., Chhun, R., Touboul, P., Development of a differential accelerometer to test the equivalence principle in the microscope mission, Acta Astronautica, 2005, 57, 341–347, www.elsevier.com/locate/actaastro.

77. Touboul, P., Metris, G., Rodrigues, M., Andre, Y., et all., MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle, Physical Review Letters, 8 December 2017, PRL119, 231101.

78. Cipolla, V., Dubios, J.B., Pouilloux, P., Prieur, P., Microscope: A Microsatellite for Equivalence Principle Measurement in Space, Proceedings of the 25th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, Aug. 8–11, 2011, paper: SSC11-I-3.

79. List, M., Selig, H., Bremer, S., Lämmerzahl, C., Microscope – A space mission to test the equivalence principle, International Astronomical Union, 2010, doi: 10.1017/S1743921309990731.

80. Touboul, P., Microscope instrument development, lessons for Goce, Space Science Reviews, 2003, 108: 393–408.

81. Touboul, P., Foulon, B., Lafargue, L., Metris, G., The MicroSCOPE Mission, Acta Astronautica, 2002, vol. 50, no 7, pp. 433–443.

82. GOCE – eoPortal Directory – Satellite Missions. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/g/goce.

83. Евстифеев М.И. Состояние разработок бортовых гравитационных градиентометров // Гироскопия и навигация. 2016. Т.24. №3(94). С. 96–114. DOI 10.17285/0869-7035.2016.24.3.096-114.

84. Пешехонов В.Г. Проблема уклонения отвесной линии в высокоточной инерциальной навигации // Гироскопия и навигация. 2020. Том 28. №4 (111). C. 3–15. DOI 10.17285/0869-7035.0046.

85. Lutz, M., Cornillon, L., Pambaguian, L, Vitupier, Y., Evaluation of ultrastable Carbon/Carbon sandwich structures joined with ceramic cement, Proceedings of the 61st IAC (International Astronautical Congress), Prague, Czech Republic, Sept. 27 – Oct. 1, 2010, IAC-10.C2.4.10.

86. Marque, J.-P., Christophe, B., Liorzou, F., Bodovillé, G., Foulon, B., Guérard, J., Lebat, V., The Ultra Sensitive Accelerometers of the ESA GOCE Mission, Proceedings of the 59th IAC (International Astronautical Congress), Glasgow, Scotland, UK, Sept. 29 – Oct. 3, 2008, IAC-08-B1.3.7.

87. Bodoville, G., Lebat, V., Development of the accelerometer sensor heads for the GOCE satellite: Assessment of the critical items and qualification, Proceedings of the 61st IAC (International Astronautical Congress), Prague, Czech Republic, Sept. 27 – Oct. 1, 2010, IAC-10.C2.1.13.

88. Zhu, Z., Zebing Zhou, Lin Cai, Yanzheng Bai, Jeff Luo, Electrostatic gravity gradiometer design for the future mission, Advances in Space Research, 2013, 51, 2269–2276.

89. Visser, A.M., Using the GOCE star trackers for validating the calibration of its Accelerometers, Journal of Geodesy, 2017, https://doi.org/10.1007/s00190-017-1097-8.

90. Christophe, B., Boulanger, D., Foulon, B., Huynh, P.-A., Lebat, V., Liorzou, F., Perrot, E., A new generation of ultra-sensitive electrostatic accelerometers for Grace Follow-on and towards the next generation gravity missions, Acta Astronautica, 2015, 117, 1–7.

91. Bidel, Y., Carraz, O., Charrière, R., Cadoret, M., Zahzam, N., Bresson, A., Compact cold atom gravimeter for field applications, Appl Phys Lett., 2013, 102: 144107.

92. Freier, C., Hauth, M., Schkolnik, V., Leykauf, B., Schilling, M., Wziontek, H., Scherneck, H.-G., Müller, J., Peters, A., Mobile quantum gravity sensor with unprecedented stability, J. Phys., 2016, 723: 012050.

93. Lautier, J. et all., Hybridizing matter-wave and classical accelerometers, Appl. Phys. Lett., 2014, 105, 144102.

94. Carraz, O., Siemes, C., Massotti, L., Haagmans, R., Silvestrin, P., Measuring the Earth’s gravity field with cold atom interferometers, arXiv:1506.03989 [physics, physics: quant-ph], 12 June 2015, http://arxiv.org/abs/1506.03989.

95. Foulon, B., Christophe, B., Marque, J.-P., Gremlun: a miniaturized gravity gradiometer for planetary and small bodiews exploration, 59th International Astronautical Congress, Space exploration symposium (A3) / Smoll Bodies Missions and Technologies (5), 2008.

96. Дубовской В.Б., Беляев М.Ю., Леонтьев В.И., Манукин А.Б., Обыденников С.С., Пшенник В.Г. Современное состояние и перспективы спутниковой акселерометрии и градиентометрии // Альманах современной метрологии. 2015. № 3. С. 84–96.

97. Дубовской В.Б., Пшеняник В.Г., Боев И.А., Леонтьев В.И. Перспективы создания гравиинерциальной и гравиградиентометрической аппаратуры для космической системы глобального геодезического мониторинга // VII Международная научно-техническая конференция «Актуальные проблемы создания космических систем дистанционного зондирования Земли». 2019.

98. Sorrentino, F., Bongs, K., et all., The Space Atom Interferometer project: status and prospects, Journal of Physics: Conference Series, 2011, 327, 012050, doi:10.1088/1742-6596/327/1/0120.


Review

For citations:


Krasnov A.A., Rozentsvein V.G. Electrostatic Accelerometers for Space Applications: Modern State and Prospects of Development. Gyroscopy and Navigation. 2022;30(2):3-33. (In Russ.) https://doi.org/10.17285/0869-7035.0088

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)