Preview

Gyroscopy and Navigation

Advanced search

The Isotope Shift Suppression in NMR-based Balanced Quantum Rotation Sensor

https://doi.org/10.17285/0869-7035.0089

Abstract

Designing a compact balanced quantum rotation sensor (gyroscope) based on nuclear magnetic resonance in xenon is one of the most urgent and promising tasks in modern metrology. The ultimate accuracy of the sensor is mostly constrained by the isotope shift conditioned by the difference in relaxation rates of two xenon isotopes under spatially nonuniform spin-exchange pumping of nuclear magnetic moments. The proposed method for suppressing the isotope shift and its partial derivatives is based on creating the external magnetic field with nonlinear spatial gradient. The simulation results based on experimental data demonstrate that the method can be applied to small gas cells with higher spatial nonlinearity of pumping parameters.

About the Authors

V. I. Petrov
Concern CSRI Elektropribor
Russian Federation

St. Petersburg



A. K. Vershovskii
Ioffe Institute
Russian Federation

St. Petersburg



References

1. Bloch, F., Hansen, W.W., Packard, M., Nuclear Induction, Phys. Rev., 1946, 69, pp. 127–128.

2. Purcell, E.M., Torrey, H.C., Pound, R. V., Resonance Absorption by Nuclear Magnetic Moments in a Solid, Phys. Rev., 1946, 69, pp. 37–38.

3. Kanegsberg, E., A Nuclear Magnetic Resonance (NMR) Gyro with optical magnetometer detection, SPIE, 1978, vol. 157, no. Laser Inertial Rotation Sensors, pp. 73–80.

4. Вершовский А.К., Литманович Ю.А., Пазгалёв А.С., Пешехонов В.Г. Гироскоп на ядерном магнитном резонансе: предельные характеристики // Гироскопия и навигация. 2018. Т.26. №1 (100). С. 55–80. DOI 10.17285/0869-7035.2018.26.1.055-080.

5. Bell, W.E., Bloom, A.L., Optical Detection of Magnetic Resonance in Alcaly Metal Vapor, Phys. Rev., 1957, vol. 107, no. 6, pp. 1559–1565.

6. Pat. 4157495 United States, Int. Cl. G01C 19/58 (20060101); G01C 19/62 (20060101); G01R 33/24 (20060101); G01R 33/24 (20060101); G01R 033/08. Nuclear magnetic resonance gyro / Grover; Bruce C. (Thousand Oaks, CA), Kanegsberg; Edward (Pacific Palisades, CA), Mark; John G. (Pasadena, CA), Meyer; Roger L. (Canoga Park, CA); Assignee Litton Systems, Inc. (Woodland Hills, CA). Appl. No.: 05/842,368; Filed: October 14, 1977; Pub. June 5, 1979.

7. Herman, R. M., Theory of Spin Exchange between Optically Pumped Rubidium and Foreign Gas Nuclei, Phys. Rev., 1965, vol. 137, no. 4A, pp. A1062–A1065.

8. Grover, B.C., Noble-Gas NMR Detection through Noble-Gas-Rubidium Hyperfine Contact Interaction, PRL, 1978, vol.40, no.6, pp. 391–392.

9. Баранцев К.А., Попов Е.Н., Литвинов А.Н. Теоретическое моделирование сигнала в схеме гироскопа на атомном спине с оптическим детектированием // Квантовая электроника. 2019. Т. 49. №2. С. 169.

10. Попов Е.Н., Баранцев К.А., Ушаков Н.А., Литвинов А.Н., Лиокумович Л.Б., Шевченко А.Н., Скляров Ф.В., Медведев А.В. Характер сигнала оптической схемы квантового датчика вращения на основе ядерного магнитного резонанса // Гироскопия и навигация. 2018. Т. 26. №1 (100). С. 93–106. DOI 10.17285/0869-7035.2018.26.1.093-106.

11. Shaefer, S.R., Cates, G.D., Chien Ting-Ray, Gonatas, D., Happer, W., and Walker, T.G., Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms, Phys. Rev. A, 1989, vol. 39, no. 11, pp. 5613–5623.

12. Sheng, D., Kabcenell, A., and Romalis, M.V., New Classes of Systematic Effects in Gas Spin Comagnetometers, PRL, 2014, vol. 113, pp. 163002.

13. Bulatowicz, M., Griffith, R., Larsen, M., Mirijanian, J., Fu, C. B., Smith, E., Snow, W.M., Yan, H., and Walker, T.G., Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized 129Xe and 131Xe Gas, PRL, 2013, vol. 111, pp.102001.

14. Walker, T., Larsen, M., Chapter eight – Spin-exchange-pumped NMR gyros, Adv. At. Mol. Opt. Phys., 2016, vol. 65, pp. 373–401.

15. Вершовский А.К., Пазгалёв А.С., Петров В.И. Природа эффекта рассогласования частот прецессии ядер 129Xe и 131Xe при спин-обменной накачке атомами щелочного металла // Журнал технической физики. 2018. Т. 44. №7. С. 88.

16. Petrov, V.I., Pazgalev, A.S., Vershovskii, A.K., Isotope Shift of Nuclear Magnetic Resonances in 129Xe and 131Xe Caused by Spin-Exchange Pumping by Alkali Metal Atoms, IEEE Sensors Journal, 2020, vol. 20, no. 2, pp. 760–766.

17. Вершовский А.К., Петров В.И. Моделирование размерных зависимостей изотопического сдвига ЯМР в ксеноне // Гироскопия и навигация. 2020. Т.28. №2 (109). С. 11–24. DOI 10.17285/0869-7035.0030.

18. Happer, W. et al., Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms, Phys. Rev. A, 1984, vol. 29, no. 6, pp. 3092–3110.

19. Zeng, X. et al., Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and 129Xe nuclei in alkali-metal – noble-gas van der Waals molecules, Phys. Rev. A, 1985, vol. 31, no. 1, pp. 260–278.

20. Hsu, J., Wu, Z., Happer, W., Cs induced 129Xe nuclear spin relaxation in N2 and He buffer gases, Physics Letters A, 1985, vol. 112, no. 3., pp. 141–145.

21. Wu, Z. et al., Coherent interactions of the polarized nuclear spins of gaseous atoms with the container walls, Phys. Rev. A, 1988, vol. 37, no. 4, pp. 1161–1175.

22. Wu, Z. et al., Experimental studies of wall interactions of adsorbed spin-polarized 131Xe nuclei, Phys. Rev. A, 1990, vol. 42, no. 5, pp. 2774–2784.

23. Вершовский А.К., Пазгалёв А.С. Оптимизация фактора качества магнитного Mx-резонанса в условиях оптической накачки // Журнал технической физики. 2008. №5. C. 116–124.


Review

For citations:


Petrov V.I., Vershovskii A.K. The Isotope Shift Suppression in NMR-based Balanced Quantum Rotation Sensor. Gyroscopy and Navigation. 2022;30(2):34-42. (In Russ.) https://doi.org/10.17285/0869-7035.0089

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)