A Method for Fiber Optic Gyroscope Temperature Drift Compensation Using Correlations between the Readings of the Gyroscope and Several Temperature Sensors
https://doi.org/10.17285/0869-7035.0092
Abstract
The paper discusses the problem of temperature drift compensation in a fiber-optic gyroscope, using a number of temperature sensors distributed along the gyroscope coil. An algorithm is proposed for processing the sensors’ data in the form of weighted sum of temperature values and its derivative. The results of the proposed algorithm comparison with an algorithm that uses averaged readings of sensors are presented. It is shown that the proposed algorithm increases the compensation accuracy up to 50%.
About the Authors
D. A. NikiforovskiiRussian Federation
St. Petersburg
I. G. Deyneka
Russian Federation
St. Petersburg
I. A. Sharkov
Russian Federation
St. Petersburg
I. K. Meshkovsky
Russian Federation
St. Petersburg
References
1. Lefevre, H.C., The Fiber Optic Gyroscope, Boston, MA, USA, Artech House, 2014, pp. 8–14.
2. Унтилов А.А., Егоров Д.А., Рупасов А.В., Новиков Р.Л., Нефоросный С.Т., Азбелева М.П., Драницына Е.В. Результаты испытаний волоконно-оптического гироскопа // Гироскопия и навигация. 2017. Т. 25. № 3 (98). C. 78–85. DOI 10.17285/0869-7035.2017.25.3.078-085.
3. Wang, G., Wang, Q., Zhao, B., Wang, Z., Compensation method for temperature error of fiber optical gyroscope based on relevance vector machine, Appl. Opt., 2016, vol. 55, pp. 1061–1066.
4. Кубланова И.Л., Шулепов В.А., Куликов А.В. Исследование интерферометрического волоконно-оптического гироскопа с модулятором двулучепреломления // Гироскопия и навигация. 2021. Т. 29 №4. С. 134–142. DOI 10.17285/0869-7035.0081.
5. Vahrameev, E.I., Galyagin, K.S., Oshivalov, M.A., Savin, M.A., Method of numerical prediction and correction of thermal drift of the fiber-optic gyro, Izv. vuzov. Priborostroenie, 2017, vol. 60, pp. 32–38.
6. Климкович Б.В. Влияние случайной погрешности температурных датчиков на качество температурной компенсации смещения нуля ВОГ нейронной сетью // Гироскопия и навигация. 2020. Т. 28. №4 (111), C. 53–70. DOI 10.17285/0869-7035.0049.
7. Dranitsyna, E., Gontar, D.A., Compensation for the Temperature Dependence of the Fog Output Signal, International Workshop Navigation and Motion Control (NMC 2021), IOP Conference Series: Materials Science and Engineering, 2022, vol. 1215 (2022), no. 012003, pp. 1–5.
8. IEEE Standard Specifying and Testing Single-Axis Interferometric Fiber Optic Gyros, IEEE Std 952-2020 (Revision of IEEE Std 952-1997).
9. Song, R., Chen, X., Analysis of fiber optic gyroscope vibration error based on improved local mean decomposition and kernel principal component analysis, Applied Optics, 2017, vol. 56, no.8, pp. 2265–2272.
10. Nikiforovskii, D., Smirnov, D., Deyneka, I., Nikitenko, A., Rupasov, A., The investigation of FOG output signal dependency on environment temperature at high rates of temperature change, J. Phys.: Conf. Ser., 2021, vol. 1864, no. 012009.
11. Hall, D.L., McMullen, S.A.H., Mathematical Techniques in Multisensor Data Fusion, Norwood, MA, USA, Artech House, 2004.
12. Higham, N.J., Stable iterations for the matrix square root, Numerical Algorithms, 1997, vol. 15, no. 2, pp. 227–242.
13. Grcar, J.F., Mathematicians of Gaussian elimination, Notices of the American Mathematical Society, 2011, vol. 58, no. 6, pp. 782–7929.
14. Dereniowski, D., Kubale, M., Cholesky Factorization of Matrices in Parallel and Ranking of Graphs, 5th International Conference on Parallel Processing and Applied Mathematics, Lecture Notes on Computer Science, 2004, vol. 3019, pp. 985–992.
15. Golub, G.H., Van Loan, C.F., Matrix Computations (3rd ed.), Baltimore, MD, USA, Johns Hopkins University Press, 1996.
16. Parlett, B.N., The QR algorithm, Computing Sci. Eng., 2000, vol. 2, pp. 38–42.
17. Dhillon, I., Parlett, B.N., Vomel, C., The Design and Implementation of the MRRR Algorithm, ACM Transactions on Mathematical Software, 2006, vol. 32, no. 4.
18. Meshkovskij I.K., Miroshnichenko G.P., Strigalev V.E., Rupasov A.V., Sharkov I.A., Influence of Thermal Effect on Performances of the Fiber Optic Gyroscope, 21st Saint Petersburg International Conference on Integrated Navigation Systems, Proceedings, 2014, pp. 243–245.
19. Рупасов А.В.Рупасов А.В. Исследование метода локального температурного воздействия и его применениеИсследование метода локального температурного воздействия и его применение для компенсации дрейфа волоконно-оптического гироскопа. Дисс. ... к.т.н. СПб.: Университетдля компенсации дрейфа волоконно-оптического гироскопа. Дисс. ... к.т.н. СПб.: Университет ИТМО, 2014. 135 с.ИТМО, 2014. 135 с.
20. Смирнов Д.С., Дейнека И.Г., Деветьяров Д.Р., Скляров Ф.В., Мухтубаев А.Б., Востриков Е.В. Оценка задержки детектирования температуры чувствительного элемента волоконно-оптического гироскопа // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21, № 6. С. 817–822. DOI: 10.17586/2226-1494-2021-21-6-817-822.
21. Wang, W., Chen, X., Temperature drift modeling and compensation of fiber optical gyroscope based on improved support vector machine and particle swarm optimization algorithms, Applied Optics, 2016, vol. 55, no. 23, pp. 6243–6250.
22. Gao, Y., Guan, L., Wang, T., Sun, Y., A Novel Artificial Fish Swarm Algorithm for Recalibration of Fiber Optic Gyroscope Error Parameters, Sensors, 2015, vol. 2015, no. 15, pp. 10547–10568.
Review
For citations:
Nikiforovskii D.A., Deyneka I.G., Sharkov I.A., Meshkovsky I.K. A Method for Fiber Optic Gyroscope Temperature Drift Compensation Using Correlations between the Readings of the Gyroscope and Several Temperature Sensors. Gyroscopy and Navigation. 2022;30(2):71-80. (In Russ.) https://doi.org/10.17285/0869-7035.0092