Preview

Gyroscopy and Navigation

Advanced search

Calibration of Onboard Magnetometers of the Attitude Control System of the SamSat-ION University Nanosatellite

EDN: WUENOL

Abstract

   This work is focused on the calibration of magnetometers for the attitude control system of the SamSat-ION university nanosatellite. A calibration methodology is proposed to take into account the temperature drift of the sensors readings. Measurements are carried out in twelve static positions, with sequential cooling and heating in the temperature range from –10 to +50°С, and are used to calculate the estimates of the temperature dependences of the bias, scale factor, and nonorthogonalities of the magnetometer axes. The main results of the ground tests of the SamSat-ION flight and engineering onboard systems obtained in accordance with the proposed methodology are discussed. The operability of the onboard systems during and after calibration under temperature variations (rise and drop) has been confirmed. Taking into account the found parameters, affected by various temperature gradients, decreases the measurement error about twelve-fold, which makes it possible to ensure reliable operation of the attitude control and stabilization system of nanosatellites based on the use of magnetometers.

About the Authors

P. N. Nikolaev
S.P. Korolev Samara National Research University (Samara University); Space Research Institute of the Russian Academy of Sciences
Russian Federation

Samara; Moscow



A. S. Espinoza Valles
S.P. Korolev Samara National Research University (Samara University
Russian Federation

Samara



M. S. Shcherbakov
S.P. Korolev Samara National Research University (Samara University); Space Research Institute of the Russian Academy of Sciences
Russian Federation

Samara; Moscow



D. D. Sobolev
Promtekh Dubna
Russian Federation

Dubna



References

1. Ovchinnikov, M. et al., Attitude control system for the first swedish nanosatellite “MUNIN”, Acta Astronaut. Pergamon, 2000, vol. 46, no. 2–6, pp. 319–326.

2. Guelman, M. et al., Design and testing of magnetic controllers for Satellite stabilization, Acta Astronaut. Pergamon, 2005, vol. 56, no. 1–2, pp. 231–239.

3. Renaudin, V., Afzal, M.H., Lachapelle, G., New method for magnetometers based orientation estimation, Record – IEEE PLANS, Position Location and Navigation Symposium, 2010, pp. 348–356.

4. Psiaki, M.L., Nanosatellite Attitude Stabilization Using Passive Aerodynamics and Active Magnetic Torquing, American Institute of Aeronautics and Astronautics Inc., 2012, vol. 27, no. 3, pp. 347–355, doi: 10.2514/1.1993.

5. Fish, C.S. et al., Design, development, implementation, and on-orbit performance of the dynamic ionosphere cubesat experiment mission, Space Sci Rev. Springer Netherlands, 2014, vol. 181, no. 1–4, pp. 61–120.

6. Beravs, T. et al., Magnetometer calibration using Kalman filter covariance matrix for online estimation of magnetic field orientation, IEEE Trans Instrum Meas. Institute of Electrical and Electronics Engineers Inc., 2014, vol. 63, no. 8, pp. 2013–2020.

7. Melnik, M., On-board Algorithm for Nanosatellite Orientation and Stabilization System, Procedia Eng. No longer published by Elsevier, 2015, vol. 104, pp. 57–64.

8. Haryadi, D.R. et al., Design of attitude determination and control system using microstrip magnetorquer for nanosatellite, ICCEREC 2016 – International Conference on Control, Electronics, Renewable Energy, and Communications 2016, Conference Proceedings, Institute of Electrical and Electronics Engineers Inc., 2017, pp. 65–69.

9. Tolegenova, A. et al., Selection of parameters for CubeSat nano-satellite stabilization magnetic system, International Siberian Conference on Control and Communications, SIBCON 2017 – Proceedings, Institute of Electrical and Electronics Engineers Inc., 2017.

10. Markley, F.L., Mortari, D., Quaternion Attitude Estimation Using Vector Observations, The Journal of the Astronautical Sciences, 2000, 48:2, Springer, 2020, vol. 48, no. 2, pp. 359–380.

11. Tossman, B.E. et al., Magsat attitude control system design and performance, AIAA Paper. AIAA (CP805), 1980, pp. 95–104.

12. Theil, S., Appel, P., Schleicher, A., Low Cost, Good Accuracy – Attitude Determination using Magnetometer and Simple Sun Sensor, Small Satellite Conference, 2003.

13. Ni, S., Zhang, C., Attitude Determination of Nano Satellite Based on Gyroscope, Sun Sensor and Magnetometer, Procedia Eng. No longer published by Elsevier, 2011, vol. 15, pp. 959–963.

14. Finance, A. et al., In-Orbit Attitude Determination of the UVSQ-SAT CubeSat Using TRIAD and MEKF Methods, Sensors (Basel), 2021, vol. 21, no. 21.

15. Лавойе Ф., Ли Д., Ландри Р. Разработка интегрированной инерциально-спутниковой навигационной системы, построенной на датчиках MEMS // Гироскопия и навигация. 2009. Т. 64. № 1. C. 75–85.

16. Аль Битар Н., Гаврилов А.И. Сравнительный анализ алгоритмов комплексирования в слабосвязанной инерциально-спутниковой системе на основе обработки реальных данных // Гироскопия и навигация. 2019. Т. 27, № 3 (106). C. 31–52.

17. Kramlikh, A., Nikolaev, P., Rylko, D., Implementation Features of Attitude Determination Algorithm for the SamSat-ION Nanosatellite, 29<sup>th</sup> Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), IEEE, 2022, pp. 1–4.

18. Boussadia, H. et al., A combined configuration (αβ filter-TRIAD algorithm) for spacecraft attitude estimation based on in-Orbit Flight Data, Aerospace Systems. Springer Science and Business Media B.V., 2022, vol. 5, no. 2, pp. 223–232.

19. Петрищев М.С., Мусалимов В.М. Микромеханический магнитометр и моделирование динамики его чувствительного элемента // Гироскопия и навигация. 2006. № 2 (53). С. 90–91.

20. Грановский В.А., Скалон А.И. Метрологическая проблема микроэлектромеханических систем и методологические основы ее решения // Гироскопия и навигация. 2006. № 4 (55). С. 117–118.

21. Babaee, M., Sharifian, S., Calibration of Triaxial Magnetometers for IoT Applications Using Meta-heuristic Methods, 4<sup>th</sup> Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), IEEE, 2018, pp. 95–99.

22. Kramlikh, A.V., Melnik, M.E., On-board algorithm for SamSat-218D nanosatellite orientation and stabilization system, Vestnik of Samara University. Aerospace and Mechanical Engineering, 2016, vol. 15, no. 2, pp. 50–56.

23. Kramlikh, A.V., Lomaka, I.A., Nikolaev, P.N., Damping control system design for SamSat nanosatellite platform, IOP Conf Ser Mater Sci Eng., 2020, vol. 862, no. 2, pp. 022065.

24. Сокен Х.Э., Гаджиев Ч. Калибровка датчиков угловой ориентации пикоспутников в полете // Гироскопия и навигация. 2011. № 3 (74). С. 34–45.

25. Иванов Д.С., Ткачев С.С., Карпенко С.О., Овчинников М.Ю. Калибровка датчиков для определения ориентации малого космического аппарата // Препринты ИПМ им. М.В. Келдыша. 2010. № 28. С. 1–30.

26. Bogatyrev, A.M., Lomaka, I.A., Nikolayev, P.N., Technology for calibration of measuring instruments of samsat nanosatellites’ family, 24<sup>th</sup> Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2017 – Proceedings. Institute of Electrical and Electronics Engineers Inc., 2017.

27. Akimov, I.O. et al., Magnetometer calibration technique for the ground-based stage of spacecraft system diagnostics, Engineering Journal: Science and Innovation, Bauman Moscow State Technical University, 2018, no. 78.

28. Niu, X. et al., Fast Thermal Calibration of Low-Grade Inertial Sensors and Inertial Measurement Units, Sensors, 2013, vol. 13, pp. 12192–12217.

29. Галка А.Г., Костров А.В., Малышев М.С. Резонансный метод измерения концентрации ионосферной плазмы на микроспутниках // Журнал технической физики. 2023. Т. 93. № 1. С. 81.

30. Kramlikh, A.V., Lomaka, I.A., Shafran, S.V., Estimation Method for Nanosatellite Orbital Parameters in Case of Abnormal Operation of Navigation Equipment, 27<sup>th</sup> Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2020 – Proceedings. Institute of Electrical and Electronics Engineers Inc., 2020.

31. Nikolaev, P.N., Kudryavtsev, I.A., Shafran, S.V., Requirements for nanosatellite-mounted GNSS-based instrument measuring ionospheric total electron content, IOP Conf Ser Mater Sci Eng. IOP Publishing, 2020, vol. 984, no. 1, p. 012022.

32. Leonov, A.I., Nikolaev, P.N., Providing Nanosatellite Triaxial Gravitational Orientation Using Magnetic Actuators, IOP Conf Ser Mater Sci Eng. IOP Publishing, 2022, vol. 1215, no. 1, p. 012005.

33. Борисов А. Современные AMP датчики для детектирования скорости, положения и слабых магнитных полей // Компоненты и Технологии. 2006. № 60.

34. Crescentini, M., Syeda, S.F., Gibiino, G.P., Hall-Effect Current Sensors: Principles of Operation and Implementation Techniques, IEEE Sens J. Institute of Electrical and Electronics Engineers Inc., 2022, vol. 22, no. 11, pp. 10137–10151.

35. InvenSense. MPU-9255 Product Specification, DS-000007.

36. MEMSIC. ±8Gauss, High Performance, Low Cost 3-axis Magnetic Sensor, MMC5883MA Rev. B data-sheet.

37. Calibrating an eCompass in the Presence of Hard- and Soft-Iron Interference, Freescale Semi-conductor Application Note, AN4246 Rev. 4.0, 11/2015.

38. Li, Q., Griffiths, J.G., Least squares ellipsoid specific fitting, Proceedings – Geometric Modeling and Processing, 2004, pp. 335–340.

39. Kok, M. et al., Calibration of a magnetometer in combination with inertial sensors, 2012, pp. 787–793.

40. Отраслевая научно-исследовательская лаборатория №1 «Вибрационная прочность и надежность авиационных изделий». [Электронный ресурс]. URL: http://onil1.ru/ (дата обращения: 31. 07. 2022).

41. Alken, P., Thébault, E., Beggan, C.D. et al., International Geomagnetic Reference Field: the 13<sup>th</sup> generation // Earth Planets Space, 2021, vol. 73, no. 49.


Review

For citations:


Nikolaev P.N., Espinoza Valles A.S., Shcherbakov M.S., Sobolev D.D. Calibration of Onboard Magnetometers of the Attitude Control System of the SamSat-ION University Nanosatellite. Gyroscopy and Navigation. 2023;31(3):109-121. (In Russ.) EDN: WUENOL

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)