Preview

Gyroscopy and Navigation

Advanced search

Onboard Two-Step Attitude Determination Algorithm for a SamSat-ION Nanosatellite

EDN: FBUMKZ

Abstract

The paper describes the measuring aids (magnetometers and light sensors) and attitude determination algorithms of SamSat-ION nanosatellite. The Kalman filter based on magnetometer measurements only is used as a basic algorithm, and the auxiliary QUEST algorithm provides a priori estimation of the quaternion input to the Kalman filter. The two-step algorithm simulation has been performed, and its efficiency has been verified.

About the Authors

A. V. Kramlikh
Samara University
Russian Federation

Samara



P. N. Nikolaev
Samara University
Russian Federation

Samara



D. V. Rylko
Ramenskoye Design Company
Russian Federation

Ramenskoye



References

1. Овчинников М.Ю., Ролдугин Д.С. Современные алгоритмы активной магнитной ориентации наноспутников // Космические аппараты и технологии. 2019. Т. 3. №2. С. 73–86.

2. Ovchinnikov, M.Yu., Roldugin, D.S., Tkachev, S.S., Penkov, V.I., B-dot algorithm steady-state motion performance, Acta Astronautica, 2018, vol. 146, pp. 66–72.

3. Hajiyev, H., Guler, D.C., Review on gyroless attitude determination methods for small satellites, Progress in Aerospace Sciences, 2017, vol. 90., pp. 54–66.

4. Martel, F., Psiaki, Pal, M., Three Axis Attitude Determination via Kalman Filtering of Magnetometer Data, Proceedings of Flight Mechanics/Estimation Theory Symposium, 1988, pp. 345–367.

5. Psiaki, M.L., Three-Axis Attitude Determination via Kalman Filtering of Magnetometer Data, Journal of Guidance, Control, and Dynamics, 1990, vol. 13, No. 3, pp. 506–514.

6. Овчинников М.Ю., Пеньков В.И., Ролдугин Д.С., Иванов Д.С. Магнитные системы ориентации малых спутников. М.: ИПМ им. М.В. Келдыша, 2016. 366 с.

7. Abdelrahman, M., Park, S.-Y., Simultaneous spacecraft attitude and orbit estimation using magnetic field vector measurements, Aerospace Science and Technology, 2011, vol. 15, no.8, рр. 653–669.

8. Searcy, J.D., Magnetometer-only attitude determination with application to the M-SAT mission, Masters Theses Scholars’ Mine, 2011., №6892, 108 p.

9. Searcy, J.D., Magnetometer-Only Attitude Determination Using Novel Two-Step Kalman Filter Approach, Journal of Guidance, Control, and Dynamics, 2012, Vol. 35, No. 6, pp. 1693–1701.

10. Иванов Д.С. Использование магнитных катушек и магнитометра для обеспечения трехосной ориентации спутника // Препринты ИПМ им. М.В. Келдыша. 2015. №47. 20 с.

11. Ivanov, D.S., Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties, Acta Astronautica, 2017, 132, pp. 103–110.

12. Ivanov, D., Attitude motion and sensor bias estimation onboard the SiriusSat-1 nanosatellite using magnetometer only, Acta Astronautica, 2021, 188, pp. 295–307.

13. Natanson, G.A., McLaughlin, S.F., Nicklas, R.C., A Method of Determining Attitude from Magnetometer Data Only, Proceedings of Flight Mechanics/Estimation Theory Symposium, 1990, pp. 359–378.

14. Natanson, G.A., A Deterministic Method for Estimating Attitude from Only Magnetometer Data, Proceedings of the World Space Congress, 1992, no. IAF-92-0036, 13 p.

15. Natanson, G.A., Challa, M.S., Deutschmann J., Baker D.F., Magnetometer-Only Attitude and Rate Determination for Gyroless Spacecraft, Proceedings of the Third International Symposium on Space Mission Operations and Ground Data Systems, 1994, pp. 791–798.

16. Challa, M., Natanson, G., Deutschmann, J., Galal K., A PC-Based Magnetometer-Only Attitude and Rate Determination System for Gyroless Spacecraft, Proceedings of the Flight Mechanics/Estimation Theory Symposium, 1995, pp. 83–96.

17. Carletta, S., Teofilatto, P., Design and Numerical Validation of an Algorithm for the Detumbling and Angular Rate Determination of a CubeSat Using Only Three-Axis Magnetometer Data, Hindawi International Journal of Aerospace Engineering, 2018, 12 p.

18. Carletta, S., Teofi P., Farissi, M.S., A Magnetometer-Only Attitude Determination Strategy for Small Satellites: Design of the Algorithm and Hardware-in-the-Loop Testing, MDPI Aerospace, 2020, 21 p.

19. MEMSIC MMC5883MA ±8 Gauss, High Performance, Low Cost 3-axis Magnetic Sensor: Datasheet, Rev. C, 2017.

20. TAOS TCS3472 Color Light-to-Digital Converter with IR Filter: Datasheet, 2012.

21. Riwanto, B.A., CubeSat Attitude System Calibration and Testing, Department of Electrical Engineering and Automation, 2015, 94 p.

22. Analog devices. [Электронный ресурс]. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/ADPD2140.pdf (дата обращения 01.02.2022)

23. Баринова Е.В., Белоконов И.В., Тимбай И.А., Предотвращение возможности возникновения резонансных режимов движения для низковысотных спутников класса CUBESAT // Гироскопия и навигация. 2021. Т. 29. №4 (115). С. 1–19. DOI 10.17285/0869-7035.0076.

24. Yaguang Yang, Spacecraft Modeling, Attitude Determination, and Control: Quaternion-Based Approach, CRC Press Taylor & Francis Group, 2019, 340 p.

25. Shuster, M. D., Oh, S.D., Three-Axis Attitude Determination from Vector Observations, Journal of Guidance and Control, 1981, vol. 4, no. 1, pp. 70–77.

26. Cheng, Y., Shuster, M.D., An Improvement to the QUEST Algorithm, Journal of Guidance, Control, and Dynamics, 2014, vol. 37, no. 1, pp. 301–305.

27. Davis, J., Mathematical Modeling of Earth’s Magnetic Field, Technical Note, Virginia Tech, Blacksburg. 2004. 21 p.

28. Иванов Д.С., Карпенко С.О., Овчинников М.Ю., Алгоритм оценки параметров ориентации малого космического аппарата с использованием фильтра Калмана // Препринты ИПМ им. М.В. Келдыша. 2009. №48. 32 с.

29. Ivanov, D., Ovchinnikov, M., Ivlev, N., Karpenko, S., Analytical study of microsatellite attitude determination algorithms, Acta Astronautica, 2015, 116, pp. 339–348.

30. Степанов О.А. Основы теории оценивания с приложениями к задачам обработки навигационной информации. Ч. 1. Введение в теорию оценивания. СПб.: ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», 2017. 509 с.

31. Liu, Y., Liu, K., Li, Y., Pan, Q., A Ground Testing System for Magnetic-only ADCS of Nano-Satellites, Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, 2016, pp. 1644–1647.


Review

For citations:


Kramlikh A.V., Nikolaev P.N., Rylko D.V. Onboard Two-Step Attitude Determination Algorithm for a SamSat-ION Nanosatellite. Gyroscopy and Navigation. 2023;31(2):65-85. (In Russ.) EDN: FBUMKZ

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7033 (Print)
ISSN 2075-0927 (Online)