Navigation without Using Acoustic Beacons
https://doi.org/10.17285/0869-7035.00106
Abstract
Autonomous bottom sensor networks are increasingly used to collect various data near the sea bottom. Transmitting these large accumulated data arrays to the data collection and processing center is a pressing problem. A promising method to retrieve data from sensor nodes is to use multiple autonomous underwater vehicles (AUV). The quality of underwater mission performance is then determined by accurate navigation of each vehicle within the group. The article presents a new efficient method of multiple AUV navigation for performing the vital task – servicing the autonomous network of bottom sensor stations. The method requires neither beacons of long baseline acoustic navigation system (LBL ANS) nor surface vehicles. During the mission, some AUVs are moving to the target sensor nodes, while the others are docked to the sensor nodes, read out the accumulated data, and perform the maintenance procedures (battery recharging, state diagnostics, and correction of the mission program). The main idea of the method is that the AUVs docked to the sensor nodes function as temporary stationary beacons of the differential ranging (DR) ANS for the other moving AUVs. The algorithms of the proposed navigation method are considered.
About the Author
A. F. ScherbatyukRussian Federation
Vladivostok
References
1. Farr, N, Collins, J., at al., Wireless Retrieval of High-Rate Ocean Bottom Seismograph Data and Time Synchronization Using the WHOI Optical Modem and REMUS AUV, Proceedings of the MTS/IEEE International Conference OCEANS, 2019, MTS/IEEE Seattle, USA.
2. Родионов А.Ю., Щербатюк А.Ф. Перспективы использования оптических систем связи и ориентации в подводной робототехнике // Подводные исследования и робототехника. 2021, no.4, pp. 37–49.
3. Thompson, J. at al., Multi-AUV Placement for Coverage Maximization in Underwater Optical Wireless Sensor Networks, Proceedings of the MTS/IEEE International Conference OCEANS, 2020, MTS/ IEEE San-Diego, USA.
4. Pessoa, L., Duarte, C., Salgado, H., Correia, V., Ferreira, B., Cruz, N., Matos, A., Design of an underwater sensor network perpetually powered from AUVs, Proceedings of the MTS/IEEE International Conference OCEANS, 2019, MTS/IEEE, Marseille, France.
5. Maki, T., Matsuda, T., Sakamaki, T., Ura, T., Kojima, J., Navigation Method for Underwater Vehicles Based on Mutual Acoustical Positioning with a Single Seafloor Station, IEEE Journal of Oceanic Engineering, 2013, vol. 38, pp. 167–177.
6. Matsuda, T., Maki, T., Sato, Y., and Sakamaki, T., Experimental Evaluation of Accuracy and Efficiency of Alternating Landmark Navigation by Multiple AUVs, IEEE Journal of Oceanic Engineering, 2018, vol. 43, no. 2, pp. 1–23.
7. Caiti, A., Calabrò, V., Fabbri, T., Fenucci, D., Munafò, A., Underwater communication and distributed localization of AUV teams, Proceedings of the MTS/IEEE International Conference OCEANS, Bergen, 2013, pp. 1–8.
8. Sergeenko, N., Scherbatyuk, A., Dubrovin, F., Some Algorithms of Cooperative AUV Navigation with Mobile Surface Beacon, Proceedings of the MTS/IEEE International Conference OCEANS, San-Diego, USA, 2013, pp. 1–6.
9. Gao, R., Chitre, M., Cooperative Positioning using Range- Only Measurements Between Two AUVs, Proceedings of the MTS/IEEE International Conference OCEANS, Sydney, NSW, Australia, 2010, pp. 1–6.
10. Baccou, P., Jouvencel, B., Creuze, V., Rabaud, C., Cooperative Positioning and Navigation for Multiple AUV Operations, Proceedings of the MTS/IEEE International Conference OCEANS, 2001, vol. 3, pp. 1816–1821.
11. Vaganay, J., Leonard, J., Curcio, J., Willcox, S., Experimental Validation of the Moving Long Base Line Navigation Concept, Proceedings of the IEEE International Conference AUV, 2004, pp. 1–7.
12. Zhang, L., Xu, D., Liu, M., Yan, W., Gao, J., An Algorithm for Cooperative Navigation of Multiple UUVs, Proc. of the Sixth Int. Symposium on Underwater Technology, Wuxi, China, April 2009, pp. 1–6.
13. Mirabellot, D., Sandersont, A., Blidberg, D., Comparing Kalman and particle filter approaches to coordinated multi-vehicle navigation, Proc. of the Int. Conf. UUST, NH, USA, 2007, pp. 1–6.
14. Dubrovin, F., Scherbatyuk, A., Scherbatyuk, D., Rodionov, A., Vaulin, Yu., Navigation for AUV, Located in the Shadow Area of LBL, During the Group Operations, Proceedings of the MTS/IEEE Conference OCEANS, 2020, Singapore-U.S., Gulf Coast.
15. Щербатюк А.Ф., Воронцов А.В., Кушнерик А.А. и др. Алгоритмы обработки видеоизображений для решения некоторых задач управления и навигации автономных необитаемых подводных аппаратов // Подводные исследования и робототехника. 2010. №1. С. 29–39.
16. Степанов О.А., Литвиненко Ю.А., Васильев В.А., Торопов А.Б., Басин М.В. Алгоритм полиномиальной фильтрации в задачах обработки навигационной информации при квадратичных нелинейностях в уравнениях динамики и измерений. Часть I. Описание и сопоставление с алгоритмами калмановского типа // Гироскопия и навигация. 2021. Т. 29. №3 (114). С. 3–33.
17. Степанов О.А., Литвиненко Ю.А., Васильев В.А., Торопов А.Б., Басин М.В. Алгоритм полиномиальной фильтрации в задачах обработки навигационной информации при квадратичных нелинейностях в уравнениях динамики и измерений. Часть 2. Примеры решения задач // Гироскопия и навигация. 2021. Т. 29. №4 (115). С. 56–77.
18. Wan, E. and Merwe, R., The Unscented Kalman Filter for Nonlinear Estimation, Proceedings of the IEEE Symposium «Adaptive Systems for Signal Processing, Communications, and Control», 2000.
19. Julier, S.J., Uhlmann, J.K., Unscented Filtering and Nonlinear Estimation, Proceedings of the IEEE, 2004, vol. 92, no. 3, pp. 401–422.
20. Gustafsson, F., Gunnarsson, F., Bergman, N., et al., Particle filters for positioning, navigation, and tracking, IEEE Transactions on Signal Processing, 2002, vol. 50, no. 2, pp. 425–437.
21. Степанов О.А., Торопов А.Б. Использование последовательных методов Монте-Карло в задаче корреляционно-экстремальной навигации // Изв. вузов. Приборостроение. 2010. Т. 53, № 10. С. 49–54.
22. Степанов О.А., Торопов А.Б. Применение последовательных методов Монте-Карло с использованием процедур аналитического интегрирования при обработке навигационной информации // XII Всероссийское совещание по проблемам управления ВСПУ-2014. Институт проблем управления им. В.А. Трапезникова РАН. 2014. С. 3324–3337.
23. Дубровин Ф.С., Щербатюк А.Ф. Исследование некоторых алгоритмов одномаяковой мобильной навигации АНПА: результаты моделирования и морских испытаний // Гироскопия и навигация. 2015. №4. С. 47–52.
24. Рыбаков К.А. Решение нелинейных задач оценивания при обработке навигационных данных с использованием непрерывного фильтра частиц // Гироскопия и навигация. 2018. Том 26. №4 (103). С. 82–95.
25. Maurelli, F., Krupinski, S., A semantic-aided particle filter approach for AUV localization, Proceedings of the MTS/IEEE Conference OCEANS, 2018, Kobe, Japan.
26. Fei, X., Shen, Y., Yan, T., Application of AUV Navigation Based on Deterministic Particle Filter Algorithm, Proceedings of the MTS/IEEE Conference OCEANS, 2018, Charleston, USA.
27. Menna, B.V., Villar, S.A., Acosta, G.G., Particle filter based autonomous underwater vehicle navigation system aided thru acoustic communication ranging, Proceedings of the MTS/IEEE Conference OCEANS, 2020, San-Diego, USA.
28. Щербатюк Д.А. Алгоритм навигационного обеспечения работы группы АНПА на основе фильтра частиц и разностно-дальномерной гидроакустической системы // Подводные исследования и робототехника. 2021. №4. C. 50–59.
29. Dubrovin, F., Vaulin, Yu., Scherbatyuk, D., Scherbatyuk, A., Some results of preliminary natural experiments for algorithms of differential-ranging acoustic positioning system intended for AUV group navigation, Proceedings of the XХVIIth International Conference on Integrated Navigation Systems, Saint Petersburg, 25–27 May, 2020.
Review
For citations:
Scherbatyuk A.F. Navigation without Using Acoustic Beacons. Gyroscopy and Navigation. 2022;30(4):106-121. (In Russ.) https://doi.org/10.17285/0869-7035.00106