Preview

Гироскопия и навигация

Расширенный поиск

Определение угловой ориентации в БИНС: сравнение традиционных подходов и метода функционального итеративного интегрирования

https://doi.org/10.17285/0869-7035.0047

Аннотация

 

Существуют два основных метода численного интегрирования дифференциальных уравнений, лежащих в основе алгоритмов определения угловой ориентации БИНС: метод, основанный на разложении решения в ряд Тейлора, и метод последовательных приближений Пикара. Метод Пикара недавно был реализован одним из авторов в рекурсивной форме с использованием аппроксимации решения уравнений ориентации полиномами Чебышева и получил название «метода функционального итеративного интегрирования» (functional iterative integration approach). В отличие от традиционных подходов данный метод позволяет получить численное решение кинематических уравнений без общепринятых упрощений исходного дифференциального уравнения. В статье указанный метод детально сравнивается с традиционными алгоритмами ориентации для произвольного количества тактов (шагов) опроса датчиков, что потребовало их модернизации за счет использования разложения в ряд Тейлора точного решения дифференциального уравнения и рекурсивного вычисления высших производных параметра ориентации. Для полноты сравнения метод функционального итеративного интегрирования был также реализован на обычных степенных полиномах. Эти два подхода рассматриваются применительно к кватерниону ориентации, хотя все сделанные выводы справедливы и для других кинематических параметров. Представлены результаты численного моделирования алгоритмов в условиях конического движения, позволяющие установить диапазон его относительных частот, в котором новые алгоритмы имеют преимущество по точности и устойчивости по сравнению с подходами, основанными на использовании обычных степенных полиномов.

Об авторах

Ю. Ву
Институт электротехники и информатики, Университет Чжао Тонг (Шанхай, Китай).
Китай

Ву Юансинь. Профессор



Ю. А. Литманович
АО «Концерн «ЦНИИ «Электроприбор» (Санкт-Петербург).
Россия

Литманович Юрий Аронович. Доктор технических наук, начальник отдела. Действительный член международной общественной организации «Академия навигации и управления движением».



Список литературы

1. Markley, F.L., Crassidis, J.L., Fundamentals of Spacecraft Attitude Determination and Control: Springer, 2014.

2. Titterton, D.H., Weston, J.L., Strapdown Inertial Navigation Technology, 2nd ed.: the Institute of Electrical Engineers, London, United Kingdom, 2007.

3. Groves, P.D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.: Artech House, Boston and London, 2013.

4. Tazartes, D.A., Inertial Navigation: From Gimbaled Platforms to Strapdown Sensors, IEEE Trans. on Aerospace and Electronic Systems, 2010, vol. 47, pp. 2292–2299.

5. Mark, J.G., Tazartes, D.A., Tuning of Coning Algorithms to Gyro Data Frequency Response Characteristics, Journal of Guidance, Control, and Dynamics, 2001, vol. 24, pp. 641–647.

6. Savage, P.G., A new second-order solution for strapped-down attitude computation, AIAA/JACC Guidance and Control Conference, 1966.

7. A study of the critical computational problems associated with strapdown inertial navigation systems, NASA CR-968 by United Aircraft Corporation, 1968.

8. Jordan, J.W., An accurate strapdown direction cosine algorithm, NASA TN-D-5384, 1969. 9. Bortz, J.E., A new mathematical formulation for strapdown inertial navigation, IEEE Transactions on Aerospace and Electronic Systems, 1971, vol. 7, pp. 61–66.

9. Miller, R., A new strapdown attitude algorithm, Journal of Guidance, Control, and Dynamics, 1983, vol. 6, pp. 287–291.

10. Ignagni, M.B., Optimal strapdown attitude integration algorithms, Journal of Guidance, Control, and Dynamics, 1990, vol. 13, pp. 363–369.

11. Ignagni, M.B., Efficient class of optimized coning compensation algorithm, Journal of Guidance, Control, and Dynamics, 1996, vol. 19, pp. 424–429.

12. Savage, P.G., Strapdown inertial navigation integration algorithm design, part 1: attitude algorithms, Journal of Guidance, Control, and Dynamics, 1998, vol. 21, pp. 19–28.

13. Litmanovich, Y.A., Lesyuchevsky, V.M., Gusinsky, V.Z., Two new classes of strapdown navigation algorithms, Journal of Guidance, Control, and Dynamics, Jun. 2000, vol. 23, pp. 34–44, 28–30.

14. Savage, P., Down-Summing Rotation Vectors For Strapdown Attitude Updating (SAI WBN-14019), Strapdown Associates, 2017. (http://strapdownassociates.com/Rotation%20Vector%20Down_ Summing.pdf).

15. Litmanovich, Y.A., Mark, J.G., Progress in Strapdown Algorithm Design at the West and East as Appeared at Saint Petersburg Conferences: Decade Overview, Saint-Petersburg International Conference on Integrated Navigational Systems, Russia, 2003.

16. Lee, J.G., Yoon, Y.J., Mark, J.G., Tazartes, D.A., Extension of strapdown attitude algorithm for highfrequency base motion, Journal of Guidance, Control, and Dynamics, 1990, vol. 13, pp. 738–743.

17. Xu, Z., Xie, J., Zhou, Z., Zhao, J., Xu, Z., Accurate Direct Strapdown Direction Cosine Algorithm, IEEE Trans. on Aerospace and Electronic Systems, 2019, vol. 55, pp. 2045–2053.

18. Branets, V.N., Shmyglevsky, I.P., Application of Quaternions to the Problems of Rigid Body Orientation: Nauka, 1973.

19. Panov, A.P., Mathematical Fundamentals of Inertial Navigation Theory: Kiev, Naukova Dumka (in Russian), 1994.

20. Rucker, C., Integrating Rotations Using Nonunit Quaternions, IEEE Robotics and Automation Letters, 2018, vol. 3, pp. 2779–2986.

21. Park, J., Chung, W.-K., Geometric integration on euclidean group with application to articulated multibody systems, IEEE Trans. on Robotics, 2005, vol. 21, pp. 850–863.

22. Andrle, M.S., Crassidis, J.L., Geometric Integration of Quaternions, Journal of Guidance, Control, and Dynamics, 2013, vol. 36, pp. 1762–1767.

23. Boyle, M., The Integration of Angular Velocity, Advances in Applied Clifford Algebras, 2017, vol. 27, pp. 2345–2374.

24. Krysl, P., Endres, L., Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies, International Journal for Numerical Methods in Engineering, vol. 62, pp. 2154–2177, 2005.

25. Hairer, E., Lubich, C., Wanner, G., Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, New York, NY, USA: Springer-Verlag, 2006.

26. Musoff, H., Murphy, J.H., Study of strapdown navigation attitude algorithm, Journal of Guidance, Control, and Dynamics, 1995, vol. 18, pp. 287–290.

27. Gusinsky, V.Z., Lesyuchevsky, V.M., Litmanovich, Y.A., Musoff, H., Schmidt, G.T., Optimization of a strapdown attitude algorithm for a stochastic motion, Navigation: Journal of The Institute of Navigation, 1997, vol. 44, pp. 163–170.

28. Gusinsky, V.Z., Lesyuchevsky, V.M., Litmanovich, Y.A., Musoff, H., Schmidt, G.T., New procedure for deriving optimized strapdown attitude algorithm, Journal of Guidance, Control, and Dynamics, 1997, vol. 20, pp. 673–680.

29. Tazartes, D.A., Mark, J.G., Coning compensation in strapdown inertial navigation systems, US Patent US005828980A, 1997.

30. Litmanovich, Y.A., Use of angular rate multiple integrals as input signals for strapdown attitude algorithms, Symposium Gyro Technology, Stuttgart, Germany, 1997.

31. Slyusar, V.M., Current Issues of Designing SINS Attitude Algorithms. Part 3. Algorithms Analysis and Synthesiswith Account for Gyros Frequency Response Effect, Gyroscopy and Navigation (in Russian), 2006, vol. 4, pp. 21–36.

32. Savage, P., Modern Strapdown Attitude Algorithms And Their Accuracy, Versus Accuracy Requirements For Unaided Strapdown Inertial Navigation (SAI WBN-14025), Strapdown Associates, 2020 (http:// strapdownassociates.com/Algorithm%20Accuracy%20Vs%20%20INS%20Requirements.pdf).

33. Sukenik, C.I., Application of ultracold molecules to inertial sensing for navigation, ADA146124, 2004.

34. Kasevich, M., Science and technology prospects for ultra-cold atoms, 2002, Available: www. nationalacademies.org/bpa/kasevich_CAMOS_021124.pdf.

35. Ignagni, M., Enhanced Strapdown Attitude Computation, Journal of Guidance Control and Dynamics (Article in Advance), 2020, pp. 1–5.

36. Wang, M., Wu, W., Wang, J., Pan, X., High-order attitude compensation in coning and rotation coexisting environment, IEEE Trans. on Aerospace and Electronic Systems, 2015, vol. 51, pp. 1178–1190.

37. Wang, M., Wu, W., He, X., Yang, G., Yu, H., Higher-order Rotation Vector Attitude Updating Algorithm, Journal of Navigation, 2019, vol. 72, pp. 721–740.

38. Wu, Y., RodFIter: Attitude Reconstruction from Inertial Measurement by Functional Iteration, IEEE Trans. on Aerospace and Electronic Systems, 2018, vol. 54, pp. 2131–2142.

39. Wu, Y., Cai, Q., Truong, T.-K., Fast RodFIter for Attitude Reconstruction from Inertial Measurement, IEEE Trans. on Aerospace and Electronic Systems, 2019, vol. 55, pp. 419–428.

40. Wu, Y., Yan, G., Attitude Reconstruction from Inertial Measurements: QuatFIter and Its Comparison with RodFIter, IEEE Trans. on Aerospace and Electronic Systems, 2019, vol. 55, pp. 3629–3639.

41. Yan, G., Weng, J., Yang, X., Qin, Y., An Accurate Numerical Solution for Strapdown Attitude Algorithm based on Picard iteration, Journal of Astronautics, 2017, vol. 38, pp. 65–71.

42. Atkinson, K.E., Han, W., Stewart, D.E., Numerical Solution of Ordinary Differential Equations: John Wiley and Sons, 2009.

43. Moore, R.E., Methods and Applications in interval analysis. Philadelphia: SIAM, 1979.

44. Press, W.H., Numerical Recipes: the Art of Scientific Computing, 3rd ed. Cambridge; New York: Cambridge University Press, 2007.

45. Ignagni, M.B., On the orientation vector differential equation in strapdown inertial systems, IEEE Trans. on Aerospace and Electronic Systems, 1994, vol. 30, pp. 1076–1081.

46. Slyusar, V.M., Current Issues of Designing SINS Attitude Algorithms. Part 1. Amplitude Extension of the Algorithms Application Field, Gyroscopy and Navigation (in Russian), vol. 2, pp. 61–74, 2006.

47. Wu, Y., Rigid Motion Reconstruction by Functional Iteration, Inertial Sensors and Systems – Symposium Gyro Technology (ISS-SGT), Karlsruhe, Germany, 2017.

48. Wu, Y., Fast RodFIter for Precision Attitude Computation, Inertial Sensors and Systems – Symposium Gyro Technology (ISS-SGT), Braunschweig, Germany, 2018.

49. Wu, Y., Next-Generation Inertial Navigation Computation Based on Functional Iteration, International Conference on Integrated Navigation Systems (ICINS) & Inertial Sensors and Systems – Symposium Gyro Technology (ISS-SGT), Saint Petersburg, Russia; Braunschweig, Germany, 2019.

50. Wu, Y., iNavFIter: Next-Generation Inertial Navigation Computation Based on Functional Iteration, IEEE Trans. on Aerospace and Electronic Systems, vol. 56, pp. 2061–2082, 2019.

51. Clenshaw, C.W., Norton, H.J., The Solution of Nonlinear Ordinary Differential Equations in Chebyshev Series, Computer Journal, vol. 6, pp. 88–92, 1963.

52. Litmanovich, Y.A., Lesyuchevsky, V.M., Gusinsky, V.Z., Strapdown attitude/navigation algorithms with angular rate/specific force multiple integrals as input signals, ION 55th Annual Meeting, Cambridge, MA, 1999.

53. Wu, Y., Litmanovich, Y.A., Strapdown Attitude Computation: Functional Iterative Integration versus Taylor Series Expansion, https://arxiv.org/abs/1909.09935, 2019.

54. Hairer, E., Nørsett, S.P., Wanner, G., Solving Ordinary Differential Equations I, Berlin Heidelberg: Springer-Verlag, 2008.

55. Rugh, W.J., Linear System Theory, 2nd ed. New Jersey: Prentice-Hall, 1996.

56. Бранец В.Н., Шмыглевский И.П. Введение в теорию бесплатформенных инерциальных навигационных систем. М.: Наука, 1992, 280 с.

57. Peng, R., Yan, G., Qin, Y., Limitations of residual error estimate for classic coning compensation algorithm, The Ninth International Conference on Electronic Measurement & Instruments, 2009.

58. Trefethen, L.N., Approximation Theory and Approximation Practice: SIAM, 2012.

59. Челноков Ю.Н., Переляев С.Е., Челнокова Л.А. Исследование алгоритмов определения инерциальной ориентации движущегося объекта. Изв. Сарат. ун-та. Сер. Математика, механика, информатика. 2016. Т. 16. Вып. 1. С. 80–95.


Рецензия

Для цитирования:


Ву Ю., Литманович Ю.А. Определение угловой ориентации в БИНС: сравнение традиционных подходов и метода функционального итеративного интегрирования. Гироскопия и навигация. 2020;28(4):16-36. https://doi.org/10.17285/0869-7035.0047

For citation:


Wu Y., Litmanovich Y.A. Strapdown Attitude Computation: Functional Iterative Integration versus Taylor Series Expansion. Giroskopiya i Navigatsiya. 2020;28(4):16-36. (In Russ.) https://doi.org/10.17285/0869-7035.0047

Просмотров: 2


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)