Electromagnetic Log Deep-Sea Sensor Design Issues
https://doi.org/10.17285/0869-7035.2018.26.2.077-087
Abstract
Тhe paper addresses the problems associated with the design of electromagnetic log sensor for deep-sea investigations. Finite element analysis has been performed for the design computer model, and the results of structural parameters optimization to reduce the strains due to external hydrostatic pressure are presented. Interrelation between the design challenges and the specific features of manufacturing and operation is demonstrated.
About the Authors
Yu. L AvanesovRussian Federation
A. S. Voronov
Russian Federation
M. I. Evstifeev
Russian Federation
References
1. Burilichev, A.V., Future of humanity is inextricably linked with the ocean study and research, Bezopasnost' Rossii, 2011, no. 5, pp. 40–43 (In Russian).
2. Sagalevich, A.M., Methods of deep dives in whole ice cover conditions, Oceanology, 2016, vol. 56, no. 3, pp. 452–458.
3. Andreev, S.I., Mineral resources of the World Ocean: Exploration and Development Prospects // Geologiya morei i okeanov (Geology of Seas and Oceans), Moscow, 2007, pp. 85–87.
4. Filimonov, A.K., Underwater robotics, Materialy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii "Ekstremal'naya robototekhnika" (Proc. Int. Sci.-Tech. Conf. on Extreme Robotics), St. Petersburg, Russia, 2011, pp. 43–49. (In Russian)
5. Grishchenko, N., Apparatus "Rus" Submerges to Trancendent Depth. Available at: http://rg.ru/2015/12/14/rus-site-anons.html (accessed 03.03.2018).
6. Lisitsyn, A.P., Columbuses of ocean depths, Vestnik RAN (Herald of the Russian Academy of Sciences), 2003, vol. 73, no. 9, pp. 842–848.
7. Tarasenko, A.A. et al., Zarubezhnye samokhodnye neobitaemye apparaty (Foreign Automotive Unmanned Apparatuses), St. Petersburg: St. Petersburg Marine Engineering Bureau "Malakhit", 2016.
8. Edict of the President of the Russian Federation of 20 July, 2017, no. 327 "On Approval of the Russian Federation State Policy Fundamentals in the Field of Naval Activities for the Period till 2030".
9. Peshekhonov, V.G., Gyroscopic Navigation Systems: Current Status and Prospects, Gyroscopy and Navigation, 2011, no. 3, pp. 111-118.
10. Chakradhara Rao, Ch., Pushpalatha, P., and Aditya Sundar, N., GPS Based Vehicle Navigation System Using Google Maps, International Journal of Computer Science and Information Technologies, 2013, vol. 4 (6), pp. 979-982.
11. Leonard, J.J., and Bahr, A., Autonomous Underwater Vehicle Navigation. In: Springer Handbook of Ocean Engineering. Springer, 2016, pp. 341-357.
12. Voronov, V.V., and Yalovenko, A.V., Induktsionnyi lag LI 2-1. Uchebnoe posobie (Electromagnetic Log LI 2-1. Study Book), St. Petersburg: Admiral S.O. Makarov State Marine Academy, 2009.
13. Barinov, A.Yu., Upgraded electromagnetic log IEL-2M, Zapiski po gidrografii, 2017, pp. 13-24. 14. Electromagnetic log LEM2-1M. Available at: http://www.elektropribor.spb.ru/ru/newprod/rekl2014/lag_lem21m.pdf (accessed 03.03.2018).
14. Regel’, V.R., and Slutsker, A.I., Structure-dynamic heterogeneity — the basis of physics of solid structure, Soros Educational Journal, 2004, vol. 8, no. 1, pp. 86-92. (In Russian).
15. Kerber, M.L. et al., Polimernye kompozitsionnye materialy: struktura, svoistva, tekhnologiya: uchebnoe posobie (Polymeric Composite Materials: Structure, Properties, Technology: Study Book), St. Petersburg, Professiya, 2008.
16. Prognoz nauchno-tekhnologicheskogo razvitiya Rossii: 2030. Novye materialy i nanotekhnologii (Outlook to Scientific and Technological Development of Russia: 2030. New Materials and Nanotechnologies). Gokhberg, L.M., and Yaroslavtsev, A.B., Eds., Moscow: Ministry of Education and Science of the Russian Federation, National Research Institute Higher School of Economics, 2014.
17. Skripnik, E.S., and Zolotov, S.M., Varying wetting of different surfaces with acrylic compound, Stroitel'stvo, materialovedenie, mashinostroenie [Construction, Materials, Mechanical Engineering], Dnepropetrovsk, PGASA, 2010, p. 5.
18. Avanesov, Yu.L., Voronov, A.S., Evstifeev, M.I., Karetin, V.G., and Korolenko, I.V., RF Patent no. 2637377, Bulletin No. 34, 2017.
19. Abdul-Karem, W., Green, N., Al-Raheem, K.F., and Hasan, A.H.A., Effect of vibration after filling on mechanical reliability in thin wall investment casting with fillability filling regime – part 1, International Journal of Advanced Manufacturing Technology, 2013, vol. 67, no. 9–12, pp. 2075–2082.
20. Pisarenko, G.S., Yakovlev, A.P., and Matveev, V.V., Spravochnik po soprotivleniyu materialov (Reference Book on Strength of Materials), Kiev: Naukova dumka, 1975.
21. Epoxy-based compounds, available at: http://all-epoxy.ru/tablizi/kompaund.htm (in Russian) (accessed 25.06.2016).
22. Avanesov, Yu.L., Voronov, A.S., and Evstifeev, M.I., Computer simulation of electromagnetic log sensor strength characteristics, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii,mekhaniki i optiki [Scientific and Technical Herald of Information Technologies, Mechanics and Optics], 2016, vol. 16, no. 4, pp. 738–744.
23. Avanesov, Yu.L., Bukanova, A.N., Voronov, A.S., and Evstifeev, M.I., Optimization of design parameters for depth electromagnetic speed sensor, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii,mekhaniki i optiki [Scientific and Technical Herald of Information Technologies, Mechanics and Optics], 2018, vol. 18, no. 1, pp. 140–146.
Review
For citations:
Avanesov Yu.L., Voronov A.S., Evstifeev M.I. Electromagnetic Log Deep-Sea Sensor Design Issues. Giroskopiya i Navigatsiya. 2018;26(2):77-87. (In Russ.) https://doi.org/10.17285/0869-7035.2018.26.2.077-087



