Features of Network Navigation Systems Construction for Surface Consumers Using Offshore Reference Points
https://doi.org/10.17285/0869-7035.2018.26.4.072-081
Abstract
The paper addresses the problem of required positioning accuracy to be provided for a marine consumer. To improve the reliability of navigation measurements, an option of system implementation comprising both stationary onshore facilities and mobile offshore ones is proposed. In order to ensure appropriate range and accuracy of navigation using surface radio navigation aids (RNA), it is proposed to employ medium-wave radiation. Specific features of navigation measures within the selected range are studied in detail, which made it possible for the authors to develop particular technical recommendations and to formulate the accuracy estimations of marine consumer positioning using the proposed solutions under different conditions.
About the Authors
A. P. AleshkinRussian Federation
I. G. Arkhipova
Russian Federation
T. O. Myslivtsev
Russian Federation
S. V. Nikiforov
Russian Federation
V. N. Polienko
Russian Federation
A. A. Semenov
Russian Federation
References
1. Rivkin, B.S., Analiticheskii obzor sostoyaniya issledovanii i razrabotok v oblasti navigatsii za rubezhom (Analytical Review of Navigation Research and Development Abroad), St. Petersburg: Concern CSRI Elektropribor, JSC, 2017.
2. Radio Navigation Plan of the Russian Federation, approved by the Order No. 1177 of the Ministry of Industries and Trade of the Russian Federation, 31 August, 2011.
3. Safonov, A.V., Increasing the accuracy of positioning of medium-wave radio navigation systems, Cand. Sci. (Eng.) Dissertation, Moscow, 2004, 124 p.
4. Dolukhanov, M.P., Rasprostranenie radiovoln (Radio Waves Propagation), Study Book, Moscow: Svyaz’, 1972.
5. Ortikov, M.Yu., Shemelov, V.A., Shishigin, I.V., and Troitsky, B.V., Ionospheric index of solar activity based on the data measurements of the spacecraft signals characteristics, Journal of Atmospheric and Solar-Terrestrial Physics, 2003, no. 65, pp. 1425–1430.
6. IRI-Plas Ionosphere Model [online], available at: http://ftp.izmiran.ru/pub/izmiran/SPIM/.
7. Al’pert, Ya.L., Rasprostranenie elektromagnitnykh voln i ionosfera (Electromagnetic Waves Propagation and Ionosphere), Moscow: Nauka, 1972.
8. Kinkul’kin, I.E., Rubtsov, V.D., and Fabrik, M.A., Fazovyi metod opredeleniya koordinat (Phase Method of Coordinates Determination), Moscow, Sovetskoe radio, 1979.
9. Himmelblau, D., Applied Nonlinear Programming, Moscow, Mir, 1975 (Russian transl.).
10. Arkhipova, I.G., and Polienko, V.N., Method of remote measurement of impedance and HF transmission antenna matching with feeder, Voprosy radioelektroniki, 2016, no. 9, pp. 71–73.
11. Aleshkin, A.P., Makarov, A.A., Ivanov, D.V., and Ipatov, A.V., Improvement of coordinate and time navigation support by developing the technology of mobile radio-interferometric complexes with long baseline, Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie, 2017, vol. 60, no. 6, pp. 529–537.
12. Yanzhura, A.S., Osadchii, A.I., and Bushmanov, S.M., The interface of underwater-automated systems to a satellite link, Informatsiya i kosmos, 2017, no. 4, pp. 59–63.
13. Belov, L.Ya., Parshin, P.N., Tyulyakov, A.E., and Shchennikov, D.L., The state system of the unified time and reference frequencies "The Goal" for the Ministry of Defense of the Russian Federation; its current status and development opportunities, Radionavigatsiya i vremya, 2016, no. 2, pp. 3–16.
14. Zarubin, S.P., Contribution of the Russian Institute of Radionavigation and Time in land-based RNS development, Radionavigatsiya i vremya, 2017, no. 3, pp. 75–85.
15. Khokhlov, N.S., Improvement of CTNS reliability for the Arctic transport and technological systems under adverse conditions, Proc. of the 1st St. Petersburg Arctic Congress "Arctic: the Territory of Integrated Competences", March 2018.
Review
For citations:
Aleshkin A.P., Arkhipova I.G., Myslivtsev T.O., Nikiforov S.V., Polienko V.N., Semenov A.A. Features of Network Navigation Systems Construction for Surface Consumers Using Offshore Reference Points. Giroskopiya i Navigatsiya. 2018;26(4):72-81. (In Russ.) https://doi.org/10.17285/0869-7035.2018.26.4.072-081



