Correction Filter for Mechanically Dithered Single-Axis Ring Laser Gyros
https://doi.org/10.17285/0869-7035.2016.24.2.041-055
Abstract
A correction filter for mechanically dithered single-axis ring laser gyros (RLG) is proposed. The filter is intended to determine the angular position of a strapdown inertial navigation system (SINS) in the RLG sensitivity axis using the known value of the RLG angular position with respect to inertial space, taking into account the models of the suspension elastic forces nonlinearity, the hysteresis model of oscillation energy dissipation, and the model of the suspension piezoceramic drive. Parameterized models of nonlinearity, dissipation, and the output characteristic of the suspension piezoceramic drive have been developed. A method for finding nonlinearity parameters of elastic forces using a set of experimental amplitude-frequency characteristics (AFC) is proposed. Numerical simulation of the AFCs of the notch elliptic and correction filters under sinusoidal rotation of the SINS with the amplitude of 1 arcmin in the frequency band of 80–3600 Hz has been performed. The efficiency of the proposed filter has been verified experimentally under pulse action on SINS; the test results are discussed. Comparison of the experimental and calculated data shows the adequacy of the proposed models and satisfactory operation of the correction digital filter.
About the Authors
B. V. KlimkovichBelarus
A. M. Tolochko
Belarus
References
1. Aronowitz, F., Fundamentals of the ring laser gyro. Optical Gyros and their Application (RTO AGARDograph 339, 1999, p. 3-1 – 3-45).
2. Anuchin, О.А. and Emelyantsev, G.I., Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnukh ob''ektov (Integrated Navigation and Orientation Systems for Marine Vehicles), Peshekhonov, V.G., Ed., St. Petersburg: CSRI Elektropribor, 2003.
3. Kuznetsov, A.G., Molchanov, A.V., Chirkin, M.V., and Izmailov, E.A., Precision laser gyro inertial navigation for autonomous, Kvantovaya elektronika, 2015, vol. 45, no. 1, pp. 78–88.
4. Wang Kedong and Gu Qitai, Key problems of mechanically dithered system of RLG, Tsinghua Science and Technology, 2001, vol. 6, no. 4, pp. 304–309.
5. Hemalatha, N., Chandrasekhar, R.S, Bai A. Swarna, and Reddy G. Satheesh, A linear observer design for dither removal in ring laser gyroscopes, IFAC, Embedded Guidance, Navigation and Control in Aerospace, 2012, vol. 1, Part 1, pp. 63–66.
6. Banerjee, K., Dam, B., Majumdar, K., Banerjee, R., and Patranabis, D., An improved dither stripping scheme for strap down ring laser gyroscopes, TENCON 2004 Conference of IEEE, vol. 1, pp. 689–692.
7. Enin, V.N. and Saneev, V.I. Digital oscillator for dither of the laser gyro. Nauka i Obrazovanie: nauchnoe izdanie MGTU im. N.E Baumana, 2015, no. 05, pp. 154–177.
8. Enin, V.N., Lyudomirskii, M.B., and Saneev, V.I., Influence of output resolution of the pulsephase detector of the laser gyro on measurement accuracy of small angular rates, Inzhenernyi vestnik, 2013, no. 11, pp. 609–624.
9. Molchanov, A.V., Belokurov, V.A., Chirkin, M.V., Koshelev, V.I., Mishin, V.Yu., and Morozov D.A., Precision laser gyroscope with a digital channel for quadrature signal processing, 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp.307-314
10. Salychev, O.S. Applied Inertial Navigation: Problems and Solutions, Moscow: BMSTU Press, 2004.
11. Il’in, M.M., Kolesnikov, K.S., and Saratov, Yu.S., Teoriya Kolebanii (Theory of Oscillations, Moscow: MGTU im. Baumana, 2003.
12. Ifeachor, E.C. and Jervis, B.W., Digital Signal Processing: A Practical Application, 2nd addition, Pearson Education, Harlow, UK, 2002.
13. Landau, L.D. and Lifshits E.M., Mekhanika (Mechanics), Moscow, Nauka, 1988.
14. Panovko, Ya.G., Internal Friction at Vibration of Elastic Systems (Vnutrennee trenie pri kolebaniyakh uprugikh system, Moscow: Fizmatlit, 1960.
15. Panovko, Ya.G., Introduction to the Theory of Oscillation (Vvedenie v teoriyu mekhanicheskikh kolebanii, Moscow: Fizmatlit, 1989.
16. Pisarenko, G.S., Vibration of Mechanical Systems with Consideration for Imperfect Elasticity of the Material (Kolebaniya mekhanicheskikh sistem s uchetom nesovershennoi uprugosti materiala), Kiev: Naukova dumka, 1970.
17. Zoteev, V.E., Parametric Identification of Dissipative Mechanical Systems based on Difference Equations (Parametricheskaya identifikatsiya dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii), Radchenko, V.P., Ed., Moscow: Mashinostroenie, 2009.
18. Piezoceramic Transducers. Methods of Measurement and Calculation of Parameters. Handbook. (P’ezokeramicheskie preobrazovateli. Metody izmereniya i raschet parametrov. Spravochnik.) Pugachev, S.I., Ed., Leningrad: Sudostroenie, 1984.
19. Lutovac, M.D., Tosic, D.V., and Evans, B.L., Filter Design for Signal Processing using MATLAB and Mathematica, NJ, USA: Prentice Hall, 2001.
Review
For citations:
Klimkovich B.V., Tolochko A.M. Correction Filter for Mechanically Dithered Single-Axis Ring Laser Gyros. Giroskopiya i Navigatsiya. 2016;24(2):41-55. (In Russ.) https://doi.org/10.17285/0869-7035.2016.24.2.041-055



