Preview

Giroskopiya i Navigatsiya

Advanced search

Influence of regularization methods on accuracy of modern global geopotential models

https://doi.org/10.17285/0869-7035.2016.24.2.077-086

Abstract

In order to increase the accuracy of Fourier synthesis for surface harmonics, used in description of the Earth gravity field, the regulating properties of stabilizing multipliers are studied. The efficiency of methods under test is estimated using the nonregularized model of the global gravity field ITSG-Grace2014S, presented on the ICGEM web-site [8].

About the Authors

V. F. Kanushin
Siberian State University of Geosystems and Technologies, Novosibirsk
Russian Federation


I. G. Ganagina
Siberian State University of Geosystems and Technologies, Novosibirsk
Russian Federation


D. N. Goldobin
Siberian State University of Geosystems and Technologies, Novosibirsk
Russian Federation


N. S. Kosarev
Siberian State University of Geosystems and Technologies, Novosibirsk
Russian Federation


A. M. Kosareva
Siberian State University of Geosystems and Technologies, Novosibirsk
Russian Federation


References

1. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Solution of Ill-Posed Problems), Moscow: Nauka, 1979.

2. Tikhonov, A.N., Goncharovskii, A.V., Stepanov, V.V., and Yagola, A.G., Chislennye metody resheniya nekorrektnykh zadach (Numerical Methods of Ill-Posed Problem Solution), Moscow: Nauka, 1990.

3. Makarov, N.P., Geodezicheskaya gravimetriya (Geodetic Gravimetry), Moscow: Nedra, 1968.

4. Karpik, A.P., Kanushin, V.F., Ganagina, I.G., Goldobin, D.N., and Mazurova, E.M., Analyzing spectral characteristics of the global Earth gravity field models obtained from the CHAMP, GRACE and GOCE space missions, Giroskopiya i Navigatsiya, 2014, no. 4 (87), pp. 34 – 44.

5. Kanushin, V.F., Ganagina, I.G., Goldobin, D.N., Mazurova, E.M., Kosareva, A.M., and Kosarev, N.S., Comparison of satellite models of the GOCE project with various sets of independent land gravimetry data, Vestnik SGGA, 2014, no. 3 (27), pp. 21 – 35.

6. Karpik, A.P., Kanushin, V.F., Ganagina, I.G., Goldobin, D.N., Kosareva, A.M., and Kosarev, N.S., Estimating the resolution and accuracy of ultra-high degree global gravity model EGM-2008, Collection of articles, Moscow: Prospekt, 2014, pp. 23 – 28.

7. Koneshov, V.N., Nepoklonov, V.B., Sermyagin, R.A., and Lidovskaya, E.A., Modern global Earth’s gravity field models and their errors, Giroskopiya i Navigatsiya, 2013, no. 1 (80), pp. 107 – 118.

8. http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html

9. Save, H., Bettadpur, S., and Tapley, B.D., Reducing errors in the GRACE gravity solutions using regularization, Journal of Geodesy, 2012, Vol. 86, pp. 695 – 711.

10. Tapley, B.D., Schutz, B.E., and Born, G.H., Statistical Orbit Determination, Academic Press, New York, 2004.

11. Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.

12. Lemoine, J., Bruinsma, S., Loyer, S., Biancale, R., Marty, J., Perosanz, F., and Balmino, G., Temporal gravity field models inferred from GRACE data, Advanced Space Research, 2007, Vol. 39, pp. 1620 – 1629.

13. Koch, K.R. and Kusche, J., Regularization of geopotential determination from satellite data by variance components, Journal of Geodesy, 2002, Vol. 76, pp. 259–268.

14. Mayer-Guerr, T., ITG-Grace03s: the latest GRACE gravity field solution, http://www.massentransporte.de/ fileadmin/20071015-17-Potsdam/mo_1050_06_mayer.pdf.

15. Kaula, W.H., Statistical and harmonic analysis of gravity, Journal of Geophysical Research, 1959, Vol. 64, pp. 2401 – 2421.

16. Kvas, A., Mayer-Gürr, T., Zehenter, N., and Klinger, B., ITSG-Grace 2014, http://portal.tugraz.at/portal/page/portal/TU_Graz/Einrichtungen /Institute/Homepages/ i5210/ rese- arch / ITSG-Grace2014.

17. Save, H., Using regularization for error reduction in GRACE gravity estimation. Dissertation, the University of Texas at Austin, 2009.

18. Save, H., Bettadpur, S., and Tapley, B.D., The use of regularization for global GRACE solutions, ftp://ftp.csr.utexas.edu/pub/grace/ Proceedings/Presentations_GSTM2008.pdf.

19. Save, H., Bettadpur, S., and Tapley, B.D., Improvements in GRACE gravity fields using regularization, http://adsabs.harvard.edu/abs /2008AGUFM.G13A0628S.

20. Biancale, R., Lemoine, J., Bruinsma, S., Gratton, S., and Bourgogne, S., An improved 10-day time series of the geoid from GRACE and LAGEOS data, ftp://ftp.csr.utexas.edu/pub/grace/ Proceedings/Presentations _GSTM2008.pdf.

21. Bruinsma, S., Lemoine, J., Biancale, R., and Vales, N., CNES/GRGS 10-day gravity field models (release 2) and their evaluation, Advanced Space Research, 2010, Vol. 45, pp. 587 – 601.

22. Neiman, Yu.M., Variatsionnyi metod fizicheskoi geodezii (Variation Method of Physical Geodesy), Moscow: Nedra, 1979.

23. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii v funktsionalnom analize (Elements of Function Theory in Functional Analysis), Moscow: Nauka, 1968.

24. Kholshevnikov, K.V., A value of potential expansion coefficient, Vestnik LGU, 1965, no. 13. pp. 155 – 158.

25. Shkodrov, V.G. and Yagudina, E.I., Joint determination of the Earth gravity field by gravity measurements on the Earth’s surface and by artificial Earth satellite motion, Observations of Artificial Earth Satellites, 1973, no. 13, pp. 69 – 89.

26. Vovk, I.G. and Miroshnikov, A.L., On the accuracy of representation of external gravity potential and terrestrial gravity by expansion in terms of spherical functions, 2nd Orlov Conference “Izuchenie Zemli kak planety metodami geofiziki, geodinamiki i astronomii” (Studying the Earth as a Planet by Geophysics, Geodynamics and Astronomy Methods), Kiev, 1988, pp. 59 – 61.

27. Titchmarsh, E.K., Teoriya dzeta-funktsii Rimana (Riemann Zeta-Function Theory), Moscow: Nauka, 1953.

28. Pellinen, L.P., Statistical analysis of gravity, Izvestiya Vuzov, Geodesiya i Aerofotos’emka, 1970, no. 5, pp. 43–50.

29. Karpik, A.P., Sapozhnikov, G.A., and Dyubanov, A.V., Realization of project of ground infrastructure of global navigation system GLONASS in Novosibirsk oblast, GEO-Sibir’-2010, 6th International Scientific Congress, Proceedings of Plenary Session, 19–29 April 2010, Novosibirsk: SGGA, 2010, pp. 57–62.

30. Antonovich, K.M., Ganagina, I.G., Kosarev, N.S., and Kosareva, A.M., On the reliability of networks of continuously operating reference stations, Izvestiya Vuzov, Geodesiya i Aerofotos’emka, 2014, no. 4с, pp. 30–37.

31. Gienko, E.G., Strukov, A.A., and Reshetov, A.P., Studying the accuracy of normal heights and vertical deflections in Novosibirsk oblast using global geoid model EGM2008, Interexpo Geo-Sibir, 2011, Vol. 1, no. 2, pp. 186-191.


Review

For citations:


Kanushin V.F., Ganagina I.G., Goldobin D.N., Kosarev N.S., Kosareva A.M. Influence of regularization methods on accuracy of modern global geopotential models. Giroskopiya i Navigatsiya. 2016;24(2):77-86. (In Russ.) https://doi.org/10.17285/0869-7035.2016.24.2.077-086

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)