Frequency Line of Nuclear Magnetic Resonance in Quantum Rotation Sensor: Negative Effect of Detection Circuit
https://doi.org/10.17285/0869-7035.2016.24.4.003-013
Abstract
We consider the distortion of nuclear magnetic resonance line in a quantum rotation sensor caused by the feedback in the cell during the detection of nuclear magnetization. Detection circuit is based on Faraday effect during longitudinal electronic paramagnetic resonance in alkali metal vapor.
About the Authors
E. N. PopovRussian Federation
K. A. Barantsev
Russian Federation
A. N. Litvinov
Russian Federation
A. S. Kuraptsev
Russian Federation
S. P. Voskoboinikov
Russian Federation
S. M. Ustinov
Russian Federation
N. V. Larionov
Russian Federation
L. B. Liokumovich
Russian Federation
N. A. Ushakov
Russian Federation
A. N. Shevchenko
Russian Federation
References
1. Rabi I.I., Zacharias J.R., Millman S., and Kusch P. A new method of measuring nuclear magnetic moment // Physical Review. 1938. Vol. 53. No. 4. P. 318–327.
2. Hunt E.R. and Carr H.Y. Nuclear magnetic resonance of 129Xe in natural xenon // Physical Review. 1963. Vol. 130. No. 6. P. 2305–2305.
3. Goodson B.M. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms // Journal of Magnetic Resonance. 2002. Vol. 155. No. 2. P. 157–216.
4. McKinstry C.S. Nuclear magnetic resonance imaging in medicine // Ulster Med J. 1986. Vol. 55. No. 2. P. 97–111.
5. Umarkhodzhaev R.M. and Kotkin A.L. Dynamic characteristics of spin oscillators // Radiotekhnika i elektronika. 1974. Vol. 19. No. 17.
6. Grigor’yan A.T., Razvitie mekhaniki giroskopicheskikh i inertsial’nykh sistem (Development of Mechanics of Gyroscopic and Inertial Systems). Moscow: Nauka, 1973.
7. Waters G.S. and Francis P.D. A nuclear magnetometer // Journal of Scientific Instruments. 1958. Vol. 35. No. 3. P. 88–93.
8. Hahn E.L. Spin echoes // Physical Review. 1950. Vol. 80. No. 4. P. 580–594.
9. Dong H., Fang J., Qin J., and Chen Y. Analysis of the electrons-nuclei coupled atomic gyroscope // Optics Communications. 2011. No. 284. P. 2886–2889.
10. Litmanovich Yu.A., Vershovskii A.K., and Peshekhonov V.G. Nuclear magnetic resonance gyro: Past, present, and future // 7-ya Rossiiskaya multikonferentsiya po problemam upravleniya (7th Russian Multiconference on Control Problems, Proceedings of the Plenary Session). St. Petersburg: Concern CSRI Elektropribor, JSC, 2014. P. 35–42.
11. Donley E.A. Nuclear magnetic resonance gyroscopes // Materials of conference “Sensors” in Kona, HI. 1-4 November 2010. IEEE. P. 17–22.
12. Kornack T.W., Ghosh R.K. and Romalis M.V. Nuclear spin gyroscope based on an atomic comagnetometer // Phys.Rev.Lett. 2005. Vol. 95. P. 230801.
13. Mirijanian J.J. Techniques to characterize vapor cell performance for a nuclear-magneticresonance gyroscope // Thesis pr. to the Faculty of California Polytechnic State University. May 2012. P. 153.
14. Simpson J.H., Fraser J.T. and Greenwood I.A. An optically pumped nuclear magnetic resonance gyroscope // IEEE Trans. Aerosp. Support. 1963. Vol. 1. P. 1107–1110.
15. Bouchiat M.A., Brossel J. and Pottier L. Interpretation of experimental results on the relaxation of optically pumped Rb in collisions with Kr atoms // Physical Review Letters. 1967. Vol. 19. No. 15. P. 817–819.
16. Happer W. Optical pumping // Reviews of modern physics. 1972. Vol. 44. No. 2. P. 170–249.
17. Happer W., Miron E., Schaefer S., Schreiber D., Van Wijngaarden W. A., and Zeng X. Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkalimetal atoms // Physical Review A. 1984. Vol. 29. No. 6. P. 3092–3110.
18. Benumof R. Optical pumping theory and experiments // American Journal of Physics. 1965. Vol. 33. P. 151–160.
19. Nagel M. and Haworth F.E. Advanced laboratory experiments on optical pumping of Rubidium atoms. Part I: Magnetic resonance, American Journal of Physics. 1966. Vol. 34. No. 7. P. 553–558.
20. Born M. and Wolf E. Principles of Optics. Elmsford N Y., 1970. 4th ed.
21. Walker T.G. and Happer W. Spin-exchange optical pumping of noble-gas nuclei // Reviews of modern physics. 1997. Vol. 69. No. 2. P. 629–642.
22. Appelt S., Ben-Amar Baranga A., Erickson C.J., Romalis M.V., Young A.R., and Happer W. Theory of spin-exchange optical pumping of 3He and 129Xe” // Physical Review A. 1998. Vol. 58. No. 2. P. 1412–1439.
23. Jau Y.-Y., Kuzma N.N., and Happer W. Measurement of 129Xe-Cs binary spin-exchange rate coefficient // Physical Review A. 2004. Vol. 69. No. 6. P. 061401/4.
24. Walker T.G. Fundamentals of spin-exchange optical pumping // Journal of Physics: Conference Series. 2011. Vol. 294. No. 1.
25. Fang J.C. and Qin J. Advances in atomic gyroscopes: A view from inertial navigation applications // Sensors. 2012. Vol. 12. P. 6331–6346.
26. Vershovskii A.K. and Pazgalev A.S. Quantum Mx-magnetometers with optical pumping: digital methods of measuring the frequency of Mx-resonance in a quickly varying field // Zhurnal teoreticheskoi fiziki. 2006. Vol. 76. No. 7. P. 108–112.
27. Larsen M. Nuclear magnetic resonance gyroscope: For DARPA's micro-technology for positioning, navigation and timing program // Materials of conference “Frequency control symposium (FCS)” in Baltimore, MD. 21-24 May 2012. IEEE. P. 1–5.
28. Meyer D. and Larsen M. Nuclear magnetic resonance gyro for inertial navigation // Gyroscopy and Navigation. 2014. No. 2. P. 75–82.
Review
For citations:
Popov E.N., Barantsev K.A., Litvinov A.N., Kuraptsev A.S., Voskoboinikov S.P., Ustinov S.M., Larionov N.V., Liokumovich L.B., Ushakov N.A., Shevchenko A.N. Frequency Line of Nuclear Magnetic Resonance in Quantum Rotation Sensor: Negative Effect of Detection Circuit. Giroskopiya i Navigatsiya. 2016;24(4):3-13. (In Russ.) https://doi.org/10.17285/0869-7035.2016.24.4.003-013



