piNAV L1 – GPS Receiver for Small Satellites
https://doi.org/10.17285/0869-7035.2016.24.4.112-121
Abstract
piNAV L1 is a GPS L1 receiver for position determination of the small satellites at LEO orbits. The receiver was tested by the ReGen software GPS simulator for static and dynamic scenarios. The typical horizontal position error for static scenario is 2.5 m (95%). The position errors for dynamic scenarios are affected by the dynamic stress errors.
References
1. Jianping Y., Huamin J., and Qun F. Application of GPS to space vehicles: analysis of space environment and errors // IEEE Aerospace and Electronic Systems Magazine. Jan 1998. Vol. 13. No.1. P. 25–30.
2. Montenbruck O., Garcia-Fernandez M., and Williams J. Performance comparison of semicodeless GPS receivers for LEO satellites // GPS Solutions. 2006. Vol. 10. P. 249–261.
3. Grelier T., Ries L., Bataille P., Perrot C., and Richard G. A new operational low cost GNSS software receiver for microsatellites // Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). 2012. P. 1, 5, 5–7.
4. Gold K. and Brown A. Architecture and performance testing of a software GPS receiver for space-based applications // Aerospace Conference. 2004. Vol. 4. P. 2404–2416.
5. Dion A., Calmettes V., and Boutillon E. Reconfigurable GPS-Galileo receiver for satellite based applications // Proceedings of the 2008 National Technical Meeting of The Institute of Navigation. San Diego, CA. January 2008. P. 277–287.
6. Kronman J. and McElroy T. Considerations for the application of GPS in satellites, GPS System Trade Study // ION GPS’94.
7. Winternitz L., Moreau M., Boegner J., and Sirotzky S. Navigator GPS receiver for fast acquisition and weak signal space applications // Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004). Long Beach, CA. September 2004. P. 1013–1026.
8. piNAV-L1 GPS Datasheet, [online] SkyFoxLabs, [vid. 2016-05-16], http://www.skyfoxlabs.com/product/1-pinav-l1-gps.
9. Stirling-Gallacher R., Hulbert A., and Povey G. A fast acquisition technique for a direct sequence spread spectrum signal in the presence of a large doppler shift // Proc. ISSSTA. 1996. Vol. 1. P. 156–160.
10. Petrovski I. and Tsujii T. Digital satellite navigation and geophysics; a practical guide with GNSS signal simulator and receiver laboratory. Cambridge University Press, 2012.
11. Kaplan E. Understanding GPS, Principles and Applications. Artech House, 2006.
12. Kovář P. and Jelen S. Cold start strategy of the CubeSat GPS receiver // Advances in Electrical and Computer Engineering. 2014. Vol. 14. No. 2. P. 29–34.
13. Mikhaylov N.V. and Vasil’ev M.V. Autonomous satellite orbit determination using spaceborne GNSS receivers // Gyroscopy and Navigation. 2011. Vol. 2. No. 1. P. 1–9.
14. Mikhailov N.V. and Chistyakov V.V. Signal search methods for space-based GNSS receivers. Part 1. Combined search // Gyroscopy and Navigation. 2013. No. 4. P. 60–71.
15. Mikhailov N.V. and Chistyakov V.V. Signal search methods for space-based GNSS receivers. Part 2. Calculation of combined search parameters // Gyroscopy and Navigation. 2014. No. 1. P. 70–80.
16. Space GPS Receiver – SGR-05U, [Online]. Available: https://www.sstl.co.uk/getattachment/97ae8ccc-024d-4376-a99d-7d3c2266a7f7/ SGR-05U-05P. [Accessed: 29- Sep- 2016].
17. GPSRM 1 GPS Receiver Module. [Online]. Available: http://www.cubesatkit.com/docs/datasheet/DS_CSK_GPSRM_1_710-00908-C.pdf. [Accessed: 29- Sep- 2016].
18. NSS GPS. [Online]. Available: Receiverhttp://www.cubesatshop.com/wp-content /uploads/2016/07/NewSpace-GPS-Receiver.pdf. [Accessed: 29- Sep- 2016].
19. Borre K. et al. A Software-Defined GPS and Galileo Receiver: A Single-Frequency Approach. Birghouser Boston, 2007.
Review
For citations:
Kovář P. piNAV L1 – GPS Receiver for Small Satellites. Giroskopiya i Navigatsiya. 2016;24(4):112-121. (In Russ.) https://doi.org/10.17285/0869-7035.2016.24.4.112-121



