Preview

Giroskopiya i Navigatsiya

Advanced search
Vol 29, No 1 (2021)
3-31 26
Abstract

Pedestrian navigation has been of high interest in many fields, such as human health monitoring, personal indoor navigation, and localization systems for first responders. Due to the potentially complicated navigation environment, selfcontained types of navigation such as inertial navigation, which do not depend on external signals, are more desirable. Pure inertial navigation, however, suffers from sensor noise and drifts and therefore is not suitable for long-term pedestrian navigation by itself. Zero-velocity update (ZUPT) aiding
technique has been developed to limit the navigation error growth, but adaptivity of algorithms, model fidelity, and system robustness have been major a concern if not properly addressed. In this paper, we attempt to establish a common approach to solve the problem of self-contained pedestrian navigation by identifying the critical parts of the algorithm
that have a strong influence on the overall performance. We first review approaches to improve the navigation accuracy in each of the critical part of implementation proposed by other groups. Then, we report our results on analytical estimations and experiments illustrating effects of combining inertial sensor calibration, stance phase detection, adaptive
model selection, and sensor fusion.

32-51 12
Abstract

The paper analyses the development prospects for aircraft navigation systems using onboard geophysical field measurements. Prospective systems that are not widely applied yet are considered: magnetic gradiometers measuring the stationary magnetic field gradient, gravity gradiometers measuring the gravity field gradient, and electromagnetic systems measuring the alternating part of magnetic field. We discuss the main problems to be solved during airborne measurements of these parameters and give an overview of algorithms and hardware solutions. We analyse the results of onboard measurements and estimate the possible navigation accuracy.

 

52-69 11
Abstract

The paper studies a previously proposed method for calculating the current accuracy characteristics of a correlation-extreme search algorithm for solving the map-aided navigation problem. The proposed method is based on the analysis of the ratio of the extreme values of the functional used in the search algorithm for comparing the measured field fragment, and the fragments obtained from a reference map, and on determining the diameter of the set of the given level for this functional. The study is carried out using an example of three spatial geophysical fields: the sea depth field, the field of gravity anomalies, and the anomalous magnetic field; it is focused on their application for underwater vehicle navigation. The specific features of the information and measurement systems used in the survey of these fields, done by means of an underwater robot are described, as well as the procedure simulating the mapping process taking these features into account. The results of computer experiments on comparison of the proposed method for calculating the current accuracy and the method used in the Bayesian algorithm for solving the navigation problem are presented.

70-96 13
Abstract

The most critical element of Hemispherical Resonator Gyroscope (HRG) is the high quality factor (Q-factor) mechanical resonator. This paper discusses the role of thermoelastic damping (TED) on effective Q-factor. Finite element method (FEM) is used to solve this highly coupled field problem involving vibration, solid mechanics, heat transfer and thermodynamics. The major contribution of this paper is the sensitivity analysis of the effect of material property, operating temperature and dimensions to arrive at macro scale resonator configuration. Hybrid hemispherical-cylindrical configuration is proposed by studying the performance parameters such as effective mass and angular gain. The uniqueness of the present work is the sensitivity study of ultra thin film coating (volume fraction of 0.01%), coating variations and different coating configurations. The coating can reduce the Q-factor by a few orders compared to uncoated shell. It has been found that coating material selection and coating configuration are very important factors. Another significance of the present work is the realization and detailed characterization of the hybrid fused silica resonator. Thin film gold coating is done on the 3D surfaces of the realized precision resonator. Detailed coating characterization is carried out using sophisticated instruments. Very fine balancing to the order of a few mHz is achieved after coating. Q-factor measurement of the coated resonator is carried out using LDV and achieved a few millions in the final functional hybrid resonator.

97-110 10
Abstract

Two safe navigation algorithms for autonomous underwater vehicles are described: algorithm for avoidance of point obstacles including all the moving underwater and surface objects, and limited size bottom objects, and algorithm for bypassing extended obstacles such as bottom elevations, rough lower ice edge, garbage patches. These algorithms are developed for a control system of a heavyweight autonomous underwater vehicle.

111-132 14
Abstract

The paper briefly overviews the development of unmanned surface ship technology over the last 20 years. Main problems of their navigation equipment and algorithms, and their compliance with the International Maritime Organization requirements are discussed.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7035 (Print)
ISSN 2075-0927 (Online)